材料科学
碳纤维
化学工程
生物量(生态学)
离子
纳米技术
工程物理
有机化学
化学
复合材料
复合数
海洋学
地质学
工程类
作者
Zhidong Hou,Da Lei,Mingwei Jiang,Yuyang Gao,Xiang Zhang,Yu Zhang,Jian‐Gan Wang
标识
DOI:10.1021/acsami.2c19362
摘要
Hard carbons as a kind of nongraphitized amorphous carbon have been recognized as potential anode materials for sodium-ion batteries (SIBs) due to its large interlayer spacing. However, the issues in terms of onerous synthetic procedure and elusive working mechanism remains critical bottlenecks for practical implement. Herein, we report a facile production of tubular hard carbon through direct carbonization of platanus flosses (FHC) for the first time. Through optimizing the pyrolysis temperatures, the FHC obtained at 1300 °C possesses a key balance between the interlayer spacing and surface area, which can maintain the substantial active sites as well as reduce the irreversible sodium storage. Accordingly, it can deliver a reversible capacity of 324.6 mAh g–1 with a high initial Coulombic efficiency of 80%, superb rate property of 107.2 mAh g–1 at 2 A g–1, and long operating stability over 1000 cycles. Furthermore, the in situ Raman spectroscopic studies certify that sodium ions are stored in FHC following the "adsorption–insertion" mechanism. Our study could provide a promising route for large-scale development of the biomass-derived carbonaceous anodes for high-performance SIBs.
科研通智能强力驱动
Strongly Powered by AbleSci AI