A method for monitoring three dimensional surface deformation in mining areas combining SBAS-InSAR, GNSS and probability integral method

全球导航卫星系统增强 全球导航卫星系统应用 干涉合成孔径雷达 大地测量学 计算机科学 变形(气象学) 遥感 地质学 数据挖掘 计算机视觉 全球定位系统 合成孔径雷达 电信 海洋学
作者
Qiuxiang Tao,Ruixiang Liu,Xuepeng Li,Tengfei Gao,Chen Yang,Yixin Xiao,Han Lin He,Yutao Wei
出处
期刊:Scientific Reports [Nature Portfolio]
卷期号:15 (1)
标识
DOI:10.1038/s41598-025-87087-4
摘要

In the process of mineral resource extraction, monitoring surface deformation is crucial for ensuring the safety of engineering and ground infrastructure. Monitoring complete three-dimensional surface deformation is particularly significant. Traditional synthetic aperture radar (InSAR) technology provides deformation components only along the line of sight (LOS) and often lacks sufficient effective data in vegetation-covered mining areas and mining subsidence centers. To address this, this study proposes a method (SBAS-PIM) that combines SBAS-InSAR with the probabilistic integral method (PIM). This method leverages high-coherence points in mining areas and GNSS data from vegetation-covered regions to invert the parameters required by PIM, thus obtaining three-dimensional surface deformation results. The proposed method allows for the acquisition of three-dimensional deformation data with fewer InSAR points and GNSS data, significantly reducing labor costs and addressing the gap in InSAR monitoring of three-dimensional surface deformation in densely vegetated areas. Additionally, it accounts for the mutual influence of multiple adjacent working faces. Finally, through the application to a mining area in Heze, China, the maximum displacements in the vertical, east–west, and north–south directions were obtained as −2011, −418, and − 281 mm, respectively. The correlation coefficients between the vertical and east–west directions and GNSS data were both greater than or equal to 0.9, indicating that this method can effectively monitor the three-dimensional surface deformation of the mining area.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
张小南完成签到,获得积分10
1秒前
威武从寒完成签到,获得积分10
2秒前
lele发布了新的文献求助10
3秒前
张光光完成签到 ,获得积分10
4秒前
NiNi完成签到,获得积分10
5秒前
断章发布了新的文献求助10
7秒前
宇宙暴龙战士暴打魔法少女完成签到,获得积分10
8秒前
ENIX完成签到 ,获得积分10
9秒前
鸢尾完成签到,获得积分10
9秒前
9秒前
9秒前
10秒前
SCL987654321发布了新的文献求助30
10秒前
完美世界应助科研通管家采纳,获得10
11秒前
Jasper应助科研通管家采纳,获得10
11秒前
丘比特应助科研通管家采纳,获得10
12秒前
secbox完成签到,获得积分10
12秒前
Lucas应助科研通管家采纳,获得10
12秒前
端庄千琴完成签到,获得积分10
12秒前
1234发布了新的文献求助10
13秒前
悦耳代亦完成签到 ,获得积分10
13秒前
深情安青应助自然涵易采纳,获得30
14秒前
ZSQ发布了新的文献求助10
14秒前
NeuroYan发布了新的文献求助50
15秒前
科研通AI5应助ZSQ采纳,获得10
18秒前
Bazinga完成签到,获得积分10
18秒前
SCL987654321完成签到,获得积分10
23秒前
24秒前
郝亚楠关注了科研通微信公众号
25秒前
25秒前
25秒前
25秒前
26秒前
27秒前
SOBER发布了新的文献求助10
29秒前
水若冰寒发布了新的文献求助10
30秒前
30秒前
qiao完成签到,获得积分10
30秒前
32秒前
王33完成签到,获得积分20
32秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3783118
求助须知:如何正确求助?哪些是违规求助? 3328459
关于积分的说明 10236592
捐赠科研通 3043558
什么是DOI,文献DOI怎么找? 1670577
邀请新用户注册赠送积分活动 799766
科研通“疑难数据库(出版商)”最低求助积分说明 759119