MoEE: Mixture of Emotion Experts for Audio-Driven Portrait Animation

纵向 动画 计算机科学 视听 艺术 多媒体 视觉艺术 人机交互 计算机图形学(图像)
作者
Heyao Liu,Wenzhang Sun,Donglin Di,Shibo Sun,Jiahui Yang,Changqing Zou,Hujun Bao
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2501.01808
摘要

The generation of talking avatars has achieved significant advancements in precise audio synchronization. However, crafting lifelike talking head videos requires capturing a broad spectrum of emotions and subtle facial expressions. Current methods face fundamental challenges: a)the absence of frameworks for modeling single basic emotional expressions, which restricts the generation of complex emotions such as compound emotions; b)the lack of comprehensive datasets rich in human emotional expressions, which limits the potential of models. To address these challenges, we propose the following innovations: 1)the Mixture of Emotion Experts (MoEE) model, which decouples six fundamental emotions to enable the precise synthesis of both singular and compound emotional states; 2)the DH-FaceEmoVid-150 dataset, specifically curated to include six prevalent human emotional expressions as well as four types of compound emotions, thereby expanding the training potential of emotion-driven models. Furthermore, to enhance the flexibility of emotion control, we propose an emotion-to-latents module that leverages multimodal inputs, aligning diverse control signals-such as audio, text, and labels-to ensure more varied control inputs as well as the ability to control emotions using audio alone. Through extensive quantitative and qualitative evaluations, we demonstrate that the MoEE framework, in conjunction with the DH-FaceEmoVid-150 dataset, excels in generating complex emotional expressions and nuanced facial details, setting a new benchmark in the field. These datasets will be publicly released.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zhangxiao123完成签到,获得积分10
1秒前
害羞大碗完成签到,获得积分20
1秒前
ssgecust完成签到,获得积分10
2秒前
2秒前
2秒前
唐若冰完成签到,获得积分10
2秒前
hhh发布了新的文献求助10
3秒前
华仔应助优美秋裤采纳,获得30
3秒前
秋毫之末完成签到,获得积分10
3秒前
nature发布了新的文献求助10
3秒前
东耦应助XMFM采纳,获得10
4秒前
lalala应助13633501455采纳,获得10
4秒前
给我一颗糖完成签到,获得积分10
4秒前
4秒前
5秒前
FCZ发布了新的文献求助10
5秒前
bkagyin应助就爱从黑巧采纳,获得10
5秒前
张铭完成签到 ,获得积分10
5秒前
5秒前
狂暴的蜗牛0713完成签到,获得积分10
5秒前
小蘑菇应助三腔二囊管采纳,获得100
5秒前
ding应助嘟嘟采纳,获得10
6秒前
稳重一寡发布了新的文献求助10
6秒前
shakura完成签到,获得积分10
6秒前
张乔然完成签到,获得积分10
7秒前
雅琳完成签到,获得积分10
7秒前
酒菜盒子发布了新的文献求助10
7秒前
GAAO发布了新的文献求助10
8秒前
8秒前
9秒前
这篇文献真好完成签到,获得积分10
9秒前
明理的枕头完成签到,获得积分10
10秒前
zhao发布了新的文献求助10
11秒前
11秒前
Tsang应助李健的小迷弟采纳,获得100
11秒前
所所应助文毛采纳,获得10
11秒前
与秋逐鹿完成签到,获得积分10
12秒前
Ava应助Engen采纳,获得10
12秒前
热心市民发布了新的文献求助500
12秒前
12秒前
高分求助中
【请各位用户详细阅读此贴后再求助】科研通的精品贴汇总(请勿应助) 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 500
Maritime Applications of Prolonged Casualty Care: Drowning and Hypothermia on an Amphibious Warship 500
Comparison analysis of Apple face ID in iPad Pro 13” with first use of metasurfaces for diffraction vs. iPhone 16 Pro 500
Towards a $2B optical metasurfaces opportunity by 2029: a cornerstone for augmented reality, an incremental innovation for imaging (YINTR24441) 500
Materials for Green Hydrogen Production 2026-2036: Technologies, Players, Forecasts 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4055689
求助须知:如何正确求助?哪些是违规求助? 3593904
关于积分的说明 11418476
捐赠科研通 3319788
什么是DOI,文献DOI怎么找? 1825490
邀请新用户注册赠送积分活动 896573
科研通“疑难数据库(出版商)”最低求助积分说明 817837