Study of Wind Power Prediction in ELM Based on Improved SSA

计算机科学 细胞生物学 生物
作者
Lei Shao,W. Huang,Hongli Liu,Li Ji
出处
期刊:Ieej Transactions on Electrical and Electronic Engineering [Wiley]
标识
DOI:10.1002/tee.24255
摘要

This paper proposes a short‐term wind power prediction model based on the improved Sparrow Search Algorithm (SSA) and Extreme Learning Machine(ELM) for anomalous wind power information from wind farms. The objective is to enhance the accuracy of short‐term wind power prediction. The model employs the extraction of features utilizing raw wind power history data from wind farms, in conjunction with the application of Variable Importance in Projection indices in Partial Least Squares (PLS‐VIP). As the ELM network model is susceptible to the influence of randomly generated input weights and thresholds at the outset of training, a solution is proposed whereby the input weights and thresholds of the ELM are optimized using SSA. The optimal weights and thresholds identified by SSA are then applied to the ELM model, thus forming the SSA‐ELM model. To address the limitations of traditional SSA, namely its susceptibility to local optimal solutions and poor global search ability, an improved SSA‐ELM algorithm is proposed. The improved SSA‐ELM algorithm introduces chaotic sequences and an exchange learning strategy to the original SSA. The rationale behind incorporating chaotic sequences is to enhance the quality of the initial solution, ensuring a more uniform distribution of sparrow positions and, consequently, a more diverse sparrow population. This, in turn, enables the algorithm to achieve a more effective global search capability through the utilization of the exchange learning strategy. Subsequently, all the data are fed into the SSA‐ELM model for prediction purposes. The simulation results demonstrate that the model exhibits enhanced prediction accuracy and improved practical applicability in wind power prediction. © 2025 Institute of Electrical Engineers of Japan. Published by Wiley Periodicals LLC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
动漫大师发布了新的文献求助10
2秒前
2秒前
冷眼观潮完成签到,获得积分10
3秒前
6秒前
8秒前
简单思萱完成签到,获得积分10
8秒前
11秒前
研友_VZG7GZ应助科研通管家采纳,获得10
11秒前
大个应助科研通管家采纳,获得10
11秒前
今后应助嗯哼采纳,获得10
11秒前
11秒前
11秒前
11秒前
研友_VZG7GZ应助guan采纳,获得10
14秒前
大模型应助取名叫做利采纳,获得10
16秒前
陈炫铭应助dylan采纳,获得10
17秒前
小崽总完成签到,获得积分10
18秒前
Aurora完成签到,获得积分10
19秒前
22秒前
陈丫完成签到,获得积分10
22秒前
小样发布了新的文献求助10
27秒前
852应助雨滴采纳,获得10
30秒前
31秒前
腾飞完成签到,获得积分10
31秒前
Ytgl发布了新的文献求助10
32秒前
dylan完成签到,获得积分10
33秒前
谦让的博完成签到,获得积分10
34秒前
脑洞疼应助ZhChHooooi采纳,获得10
38秒前
小样完成签到,获得积分10
38秒前
共享精神应助礽粥粥采纳,获得10
44秒前
Jasper应助anes采纳,获得10
45秒前
补药学习完成签到,获得积分10
46秒前
46秒前
48秒前
wangchaofk发布了新的文献求助10
51秒前
53秒前
lemono_o完成签到,获得积分10
55秒前
lovelife完成签到,获得积分10
56秒前
57秒前
科研通AI5应助Aliks采纳,获得10
58秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3781475
求助须知:如何正确求助?哪些是违规求助? 3327032
关于积分的说明 10229289
捐赠科研通 3041969
什么是DOI,文献DOI怎么找? 1669728
邀请新用户注册赠送积分活动 799249
科研通“疑难数据库(出版商)”最低求助积分说明 758757