医学
前列腺癌
鉴定(生物学)
疾病
医学物理学
跟踪(教育)
肿瘤科
疾病监测
放射科
内科学
癌症
心理学
教育学
植物
生物
作者
Cecil M. Benitez,Hannicka Sahlstedt,Ida Sonni,Johan Brynolfsson,Gholam R. Berenji,Jesus E. Juarez,Nathanael Kane,Sonny Tsai,Matthew B. Rettig,Nicholas G. Nickols,Sai Duriseti
标识
DOI:10.1016/j.euo.2024.10.011
摘要
Prostate-specific membrane antigen (PSMA) molecular imaging is widely used for disease assessment in prostate cancer (PC). Artificial intelligence (AI) platforms such as automated Prostate Cancer Molecular Imaging Standardized Evaluation (aPROMISE) identify and quantify locoregional and distant disease, thereby expediting lesion identification and standardizing reporting. Our aim was to evaluate the ability of the updated aPROMISE platform to assess treatment responses based on integration of the RECIP (Response Evaluation Criteria in PSMA positron emission tomography-computed tomography [PET/CT]) 1.0 classification.
科研通智能强力驱动
Strongly Powered by AbleSci AI