Kinetic Modeling of the Antibody Disulfide Bond Reduction Reaction With Integrated Prediction of the Drug Load Profile for Cysteine‐Conjugated ADCs

化学 背景(考古学) 毛细管电泳 半胱氨酸 共轭体系 组合化学 线性回归 关键质量属性 生物系统 计算机科学 色谱法 粒径 生物化学 有机化学 物理化学 机器学习 古生物学 生物 聚合物
作者
Jan Tobias Weggen,Pedro González,Kimberly Hui,Ryan Bean,Michaela Wendeler,Jürgen Hubbuch
出处
期刊:Biotechnology and Bioengineering [Wiley]
被引量:1
标识
DOI:10.1002/bit.28899
摘要

Antibody-drug conjugates (ADC) constitute a groundbreaking advancement in the field of targeted therapy. In the widely utilized cysteine conjugation, the cytotoxic payload is attached to reduced interchain disulfides which involves a reduction of the native monoclonal antibody (mAb). This reaction needs to be thoroughly understood and controlled as it influences the critical quality attributes (CQAs) of the final ADC product, such as the drug-to-antibody ratio (DAR) and the drug load distribution (DLD). However, existing methodologies lack a mechanistic description of the relationship between process parameters and CQAs. In this context, kinetic modeling provides comprehensive reaction understanding, facilitating the model-based optimization of reduction reaction parameters and potentially reduces the experimental effort needed to develop a robust process. With this study, we introduce an integrated modeling framework consisting of a reduction kinetic model for the species formed during the mAb reduction reaction in combination with a regression model to quantify the number of conjugated drugs by DAR and DLD. The species formed during reduction will be measured by analytical capillary gel electrophoresis (CGE), and the DAR and DLD will be derived from reversed-phase (RP) chromatography. First, we present the development of a reduction kinetic model to describe the impact of reducing agent excess and reaction temperature on the kinetic, by careful investigation of different reaction networks and sets of kinetic rates. Second, we introduce a cross-analytical approach based on multiple linear regression (MLR), wherein CGE data is converted into the RP-derived DAR/DLD. By coupling this with the newly developed reduction kinetic model, an integrated model encompassing the two consecutive reaction steps, reduction and conjugation, is created to predict the final DAR/DLD from initial reduction reaction conditions. The integrated model is finally utilized for an in silico screening to analyze the effect of the reduction conditions, TCEP excess, temperature and reaction time, directly on the final ADC product.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
orixero应助ding7862采纳,获得10
1秒前
风趣霆完成签到,获得积分10
2秒前
super.Q完成签到,获得积分10
4秒前
小知了完成签到,获得积分10
6秒前
墨瞳完成签到,获得积分10
6秒前
球球的铲屎官完成签到 ,获得积分10
7秒前
Beyond095完成签到,获得积分10
13秒前
沉醉的中国钵完成签到 ,获得积分10
13秒前
huyuan完成签到,获得积分10
13秒前
14秒前
郭自同完成签到,获得积分10
15秒前
游大达完成签到,获得积分0
15秒前
青衫完成签到 ,获得积分10
17秒前
2哇哇哇发布了新的文献求助10
20秒前
21秒前
22秒前
不加香菜完成签到 ,获得积分10
25秒前
小贤发布了新的文献求助10
25秒前
研友_LMpo68完成签到 ,获得积分10
26秒前
小李子完成签到 ,获得积分10
26秒前
神外王001完成签到 ,获得积分10
28秒前
橙啊程完成签到 ,获得积分10
29秒前
朱科源啊源完成签到 ,获得积分10
30秒前
qaplay完成签到 ,获得积分0
30秒前
zcydbttj2011完成签到 ,获得积分10
32秒前
欣欣子完成签到 ,获得积分10
32秒前
路在脚下完成签到 ,获得积分10
34秒前
yy完成签到,获得积分10
35秒前
脑洞疼应助小贤采纳,获得10
36秒前
LIU完成签到 ,获得积分10
36秒前
Ava应助科研通管家采纳,获得10
38秒前
丘比特应助科研通管家采纳,获得10
39秒前
39秒前
40秒前
毕个业完成签到 ,获得积分10
46秒前
蓝桉完成签到 ,获得积分10
48秒前
清风完成签到 ,获得积分10
48秒前
Chnimike完成签到 ,获得积分10
52秒前
小九完成签到,获得积分10
57秒前
Alan完成签到 ,获得积分10
57秒前
高分求助中
【请各位用户详细阅读此贴后再求助】科研通的精品贴汇总(请勿应助) 10000
求 5G-Advanced NTN空天地一体化技术 pdf版 500
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 500
Maritime Applications of Prolonged Casualty Care: Drowning and Hypothermia on an Amphibious Warship 500
Comparison analysis of Apple face ID in iPad Pro 13” with first use of metasurfaces for diffraction vs. iPhone 16 Pro 500
Towards a $2B optical metasurfaces opportunity by 2029: a cornerstone for augmented reality, an incremental innovation for imaging (YINTR24441) 500
Robot-supported joining of reinforcement textiles with one-sided sewing heads 490
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4068120
求助须知:如何正确求助?哪些是违规求助? 3607086
关于积分的说明 11451202
捐赠科研通 3327839
什么是DOI,文献DOI怎么找? 1829612
邀请新用户注册赠送积分活动 899430
科研通“疑难数据库(出版商)”最低求助积分说明 819626