Reconstruction of spectral light field image based on compressed spectral imaging

光场 计算机科学 人工智能 高光谱成像 切片 迭代重建 压缩传感 计算机视觉 深度学习 光谱成像 全光谱成像 算法 光学 物理 计算机图形学(图像)
作者
Wanting Dai,Xiaoming Ding,Yazhou Feng,Chuanwang Zhang,Hao Yuan,Qiangqiang Yan
标识
DOI:10.1117/12.3045867
摘要

This paper introduces a snapshot spectral volumetric imaging approach based on light field image slicing and encoding. By slicing and encoding light field information, followed by spectral dispersion and array reimaging lens acquisition of aliased data, a four-dimensional data hypercube is reconstructed using deep learning-based algorithms. This hypercube contains three-dimensional spatial information and one-dimensional spectral information of the scene. The proposed approach utilizes Sanpshot Compressed Imaging Mapping Spectrometer(SCIMS)principle for initial light field spectral data acquisition. Reconstruction of this data employs traditional algorithms like Alternating Direction Method of Multipliers (ADMM) and Generalized Alternating Projection (GAP), as well as deep learning methods such as LRSDN and PnP-DIP. Simulation experiments reveal that classical compressive sensing-based spectral data reconstruction algorithms perform poorly, especially affecting digital refocusing of individual spectral bands in light field images. In contrast, deep learning algorithms exhibit significant improvements, effectively extracting and preserving spatial distribution characteristics of light field data, thus robustly recovering light field information. This validates the effectiveness of the proposed spectral volumetric imaging approach and deep learning-based reconstruction methods. In future research, we will refine the mathematical model, integrate spatial and spectral correlations of light field imaging, develop specialized deep neural network algorithms, and enhance reconstruction of light field spectral data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李健应助左左采纳,获得10
刚刚
上官若男应助cherish采纳,获得10
刚刚
徐丑发布了新的文献求助30
刚刚
程莉发布了新的文献求助10
2秒前
ppwl发布了新的文献求助10
2秒前
慕青应助rayce采纳,获得10
3秒前
欣欣发布了新的文献求助10
3秒前
4秒前
4秒前
Akim应助韩先生采纳,获得10
4秒前
善学以致用应助吕小布采纳,获得10
6秒前
忧子忘发布了新的文献求助10
6秒前
3D完成签到,获得积分10
7秒前
HL发布了新的文献求助10
8秒前
10秒前
情怀应助生动的电脑采纳,获得10
10秒前
10秒前
11秒前
11秒前
科研通AI2S应助程莉采纳,获得10
13秒前
power发布了新的文献求助30
14秒前
左左发布了新的文献求助10
15秒前
16秒前
16秒前
17秒前
研友_xnEOX8完成签到,获得积分20
20秒前
21秒前
土豆酱发布了新的文献求助10
21秒前
韩先生发布了新的文献求助10
22秒前
慕青应助星移采纳,获得10
22秒前
24秒前
研友_xnEOX8发布了新的文献求助10
24秒前
左左完成签到,获得积分20
25秒前
26秒前
26秒前
junmahmu完成签到,获得积分10
26秒前
脑洞疼应助缓慢平蓝采纳,获得10
26秒前
多和5的武器完成签到,获得积分10
27秒前
隐形曼青应助power采纳,获得10
28秒前
张大帅完成签到,获得积分10
28秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
材料概论 周达飞 ppt 500
Nonrandom distribution of the endogenous retroviral regulatory elements HERV-K LTR on human chromosome 22 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
科学教育中的科学本质 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3806811
求助须知:如何正确求助?哪些是违规求助? 3351524
关于积分的说明 10354611
捐赠科研通 3067340
什么是DOI,文献DOI怎么找? 1684489
邀请新用户注册赠送积分活动 809716
科研通“疑难数据库(出版商)”最低求助积分说明 765635