Accuracy of ChatGPT 3.5, 4.0, 4o and Gemini in diagnosing oral potentially malignant lesions based on clinical case reports and image recognition

人工智能 图像(数学) 医学 计算机科学 放射科 皮肤病科
作者
Pooja Pradhan
出处
期刊:Medicina Oral Patologia Oral Y Cirugia Bucal [Medicina Oral S.L.]
被引量:3
标识
DOI:10.4317/medoral.26824
摘要

The accurate and timely diagnosis of oral potentially malignant lesions (OPMLs) is crucial for effective management and prevention of oral cancer. Recent advancements in artificial intelligence technologies indicates its potential to assist in clinical decision-making. Hence, this study was carried out with the aim to evaluate and compare the diagnostic accuracy of ChatGPT 3.5, 4.0, 4o and Gemini in identifying OPMLs. The analysis was carried out using 42 case reports from PubMed, Scopus and Google Scholar and images from two datasets, corresponding to different OPMLs. The reports were inputted separately for text description-based diagnosis in GPT 3.5, 4.0, 4o and Gemini, and for image recognition-based diagnosis in GPT 4o and Gemini. Two subject-matter experts independently reviewed the reports and offered their evaluations. For text-based diagnosis, among LLMs, GPT 4o got the maximum number of correct responses (27/42), followed by GPT 4.0 (20/42), GPT 3.5 (18/42) and Gemini (15/42). In identifying OPMLs based on image, GPT 4o demonstrated better performance than Gemini. There was fair to moderate agreement found between Large Language Models (LLMs) and subject experts. None of the LLMs matched the accuracy of the subject experts in identifying the correct number of lesions. The results point towards cautious optimism with respect to commonly used LLMs in diagnosing OPMLs. While their potential in diagnostic applications is undeniable, their integration should be approached judiciously.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
佳仔发布了新的文献求助10
1秒前
afsdfds完成签到,获得积分10
1秒前
科研兄发布了新的文献求助10
1秒前
1秒前
3秒前
年轻的凝云完成签到 ,获得积分10
3秒前
urkk发布了新的文献求助10
5秒前
深情怀亦发布了新的文献求助10
5秒前
小哑巴发布了新的文献求助10
6秒前
哈哈发布了新的文献求助10
6秒前
xiao发布了新的文献求助10
8秒前
简单宛秋完成签到,获得积分10
9秒前
科研通AI5应助佳子采纳,获得10
9秒前
星星轨迹发布了新的文献求助10
10秒前
老天师一巴掌完成签到 ,获得积分10
10秒前
lumen完成签到,获得积分10
11秒前
11秒前
11秒前
11秒前
12秒前
简单宛秋发布了新的文献求助10
13秒前
小胡子发布了新的文献求助10
13秒前
14秒前
14秒前
orixero应助gfreezer采纳,获得10
14秒前
领导范儿应助知更采纳,获得10
15秒前
淡淡凌珍发布了新的文献求助10
15秒前
16秒前
zhaoxuelian发布了新的文献求助10
17秒前
英俊的铭应助urkk采纳,获得10
17秒前
上官若男应助卷心菜采纳,获得10
17秒前
shining发布了新的文献求助10
18秒前
CipherSage应助小哑巴采纳,获得10
19秒前
20秒前
20秒前
20秒前
qqyzdyz完成签到,获得积分10
20秒前
一头熊完成签到,获得积分10
21秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Pediatric Injectable Drugs 500
Instant Bonding Epoxy Technology 500
Methodology for the Human Sciences 500
ASHP Injectable Drug Information 2025 Edition 400
DEALKOXYLATION OF β-CYANOPROPIONALDEYHDE DIMETHYL ACETAL 400
Assessment of adverse effects of Alzheimer's disease medications: Analysis of notifications to Regional Pharmacovigilance Centers in Northwest France 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4373807
求助须知:如何正确求助?哪些是违规求助? 3870676
关于积分的说明 12065347
捐赠科研通 3513312
什么是DOI,文献DOI怎么找? 1928013
邀请新用户注册赠送积分活动 969819
科研通“疑难数据库(出版商)”最低求助积分说明 868587