人工神经网络
计算机科学
变压器
期限(时间)
算法
人工智能
电气工程
工程类
电压
物理
量子力学
作者
Xiao‐Wei Fan,Rong‐Long Wang,Yi Yang,Jingang Wang
出处
期刊:Applied sciences
[Multidisciplinary Digital Publishing Institute]
日期:2024-12-21
卷期号:14 (24): 11991-11991
被引量:1
摘要
In order to solve the difficulties that the uncertain characteristics of PV output, such as volatility and intermittency, will bring to the development of microgrid scheduling plans, this paper proposes a Transformer–Bidirectional Long Short-Term Memory (BiLSTM) neural network PV power generation forecasting fusion model based on the Newton–Raphson optimization algorithm (NRBO) and Variational Modal Decomposition (VMD). Firstly, the principle of the VMD technique and the Gray Wolf Optimization (GWO) algorithm’s key parameter optimization method for VMD are introduced. Then, the Transformer decoder partially fuses the BiLSTM network and retains the encoder to obtain the body of the prediction model, followed by explaining the principle of the NRBO algorithm. And finally, the VMD-NRBO-Transformer-BiLSTM prediction model and hyperparameter selection are evaluated by the NRBO algorithm. The algorithm sets up a multi-model comparison experiment, and the results show that the prediction model proposed in this paper has the best prediction accuracy and the optimal evaluation index.
科研通智能强力驱动
Strongly Powered by AbleSci AI