已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

An enhanced deep intelligent model with feature fusion and ensemble learning for the fault diagnosis of rotating machinery

Softmax函数 断层(地质) 人工智能 计算机科学 可靠性(半导体) 卷积神经网络 特征(语言学) 人工神经网络 模式识别(心理学) 特征提取 深度学习 信号(编程语言) 机器学习 功率(物理) 语言学 物理 哲学 量子力学 地震学 程序设计语言 地质学
作者
Kejia Zhuang,Bin Deng,Huai Chen,Li Jiang,Yibing Li,Jun Hu,Heung‐Fai Lam
出处
期刊:Structural Health Monitoring-an International Journal [SAGE Publishing]
标识
DOI:10.1177/14759217241298490
摘要

Vibration signals, serving as critical sources of information for monitoring the status of rotating machinery, demand effective extraction and rational utilization of its features to significantly enhance the accuracy and reliability of fault diagnosis. However, vibration signal features typically manifest as nonlinear and nonstationary, posing a significant challenge in industrial settings. To tackle this challenge, this article proposes an enhanced deep intelligent model based on feature fusion and ensemble learning for practical fault diagnosis of rotating machinery. First, a parallel network structure is introduced to comprehensively and accurately explore the fault characteristics of rotating machinery. This network comprises two branches: the first branch designs an improved one-dimensional convolutional neural network to extract locally robust features from raw signals; the second branch adopts variational mode decomposition to decompose raw signals into a set of intrinsic mode functions and extract comprehensive statistical features in both the time and frequency domains, significantly enhancing the signal representation capability. Subsequently, a deep neural network is used to extract more stable feature information. The features from the two branches are then fused, and the final network output is generated through a softmax regression function. Finally, ensemble learning uses a majority voting scheme to obtain more stable final outputs. To confirm the effectiveness of the proposed method, experiments are conducted on two laboratory cases and one industrial case. The experimental results demonstrate that the proposed method significantly improves fault diagnosis accuracy and reliability in controlled laboratory environments and real-world industrial applications, making it highly applicable for real-time monitoring and predictive maintenance of industrial machinery. These improvements can reduce maintenance costs and downtime, thus enhancing operational efficiency in various industrial settings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
KK完成签到,获得积分10
1秒前
小初应助淡定天菱采纳,获得60
2秒前
5秒前
7秒前
7秒前
12秒前
诚心的珠发布了新的文献求助10
13秒前
犹豫大娘发布了新的文献求助30
13秒前
宇文宛菡完成签到,获得积分10
13秒前
13秒前
LeiX完成签到,获得积分10
15秒前
称心涵柳发布了新的文献求助10
16秒前
yykNJMU发布了新的文献求助10
20秒前
我是老大应助诚心的珠采纳,获得10
25秒前
脑洞疼应助称心涵柳采纳,获得10
25秒前
顾矜应助916采纳,获得10
26秒前
zengyi完成签到,获得积分10
26秒前
自由凡波完成签到,获得积分10
27秒前
123完成签到,获得积分10
27秒前
jixuzhuixun完成签到,获得积分10
29秒前
李健应助小章鱼采纳,获得10
33秒前
yykNJMU完成签到,获得积分10
34秒前
36秒前
shjyang完成签到,获得积分10
37秒前
37秒前
2025alex完成签到,获得积分10
39秒前
huang完成签到 ,获得积分10
39秒前
40秒前
123发布了新的文献求助10
41秒前
周周发布了新的文献求助10
42秒前
苏silence发布了新的文献求助10
46秒前
Lgcq12138发布了新的文献求助10
46秒前
缥缈的机器猫完成签到,获得积分10
47秒前
49秒前
51秒前
三雨发布了新的文献求助10
53秒前
开放以山完成签到,获得积分10
53秒前
53秒前
1111发布了新的文献求助10
54秒前
高分求助中
Разработка метода ускоренного контроля качества электрохромных устройств 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
Politiek-Politioneele Overzichten van Nederlandsch-Indië. Bronnenpublicatie, Deel II 1929-1930 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3819699
求助须知:如何正确求助?哪些是违规求助? 3362683
关于积分的说明 10418093
捐赠科研通 3080849
什么是DOI,文献DOI怎么找? 1694840
邀请新用户注册赠送积分活动 814781
科研通“疑难数据库(出版商)”最低求助积分说明 768482