Predicting microbe-disease associations via graph neural network and contrastive learning

计算机科学 特征学习 人工智能 图形 机器学习 生物网络 节点(物理) 图形核 特征(语言学) 联想(心理学) 支持向量机 计算生物学 理论计算机科学 核方法 生物 多项式核 语言学 哲学 结构工程 认识论 工程类
作者
Cong Jiang,J. H. Feng,Boxuan Shan,Qiyue Chen,Jian Yang,Gang Wang,Xiaogang Peng,Xiaozheng Li
出处
期刊:Frontiers in Microbiology [Frontiers Media]
卷期号:15
标识
DOI:10.3389/fmicb.2024.1483983
摘要

In the contemporary field of life sciences, researchers have gradually recognized the critical role of microbes in maintaining human health. However, traditional biological experimental methods for validating the association between microbes and diseases are both time-consuming and costly. Therefore, developing effective computational methods to predict potential associations between microbes and diseases is an important and urgent task. In this study, we propose a novel computational framework, called GCATCMDA, for forecasting potential associations between microbes and diseases. Firstly, we construct Gaussian kernel similarity networks for microbes and diseases using known microbe-disease association data. Then, we design a feature encoder that combines graph convolutional network and graph attention mechanism to learn the node features of networks, and propose a feature dual-fusion module to effectively integrate node features from each layer's output. Next, we apply the feature encoder separately to the microbe similarity network, disease similarity network, and microbe-disease association network, and enhance the consistency of features for the same nodes across different association networks through contrastive learning. Finally, we pass the microbe and disease features into an inner product decoder to obtain the association scores between them. Experimental results demonstrate that the GCATCMDA model achieves superior predictive performance compared to previous methods. Furthermore, case studies confirm that GCATCMDA is an effective tool for predicting microbe-disease associations in real situations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
甘雪娜发布了新的文献求助30
1秒前
2秒前
852应助丢丢银采纳,获得10
3秒前
CX完成签到 ,获得积分10
4秒前
7秒前
8秒前
8秒前
搜集达人应助闪明火龙果采纳,获得10
10秒前
雪白的平蓝关注了科研通微信公众号
12秒前
包容的映天完成签到 ,获得积分10
12秒前
科研渣子发布了新的文献求助10
12秒前
QIZH发布了新的文献求助10
12秒前
小马甲应助Lin采纳,获得10
13秒前
QIZH完成签到,获得积分10
17秒前
大恩区完成签到,获得积分10
18秒前
不如实干兴邦完成签到,获得积分10
20秒前
myt完成签到,获得积分10
20秒前
嘻嘻叮完成签到,获得积分10
20秒前
20秒前
24秒前
can完成签到,获得积分10
29秒前
29秒前
丢丢银发布了新的文献求助10
34秒前
深情安青应助小李采纳,获得10
34秒前
闪明火龙果完成签到,获得积分20
38秒前
科研通AI5应助丢丢银采纳,获得10
48秒前
称心曼岚完成签到 ,获得积分10
50秒前
所所应助煎蛋采纳,获得10
52秒前
54秒前
小李完成签到 ,获得积分10
54秒前
55秒前
默默板凳完成签到 ,获得积分10
56秒前
jingrong发布了新的文献求助10
58秒前
惧感完成签到 ,获得积分10
59秒前
Lin发布了新的文献求助10
59秒前
wanci应助风中乐曲采纳,获得10
1分钟前
秭归子归发布了新的文献求助10
1分钟前
yukinade完成签到,获得积分10
1分钟前
jingrong完成签到,获得积分10
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777008
求助须知:如何正确求助?哪些是违规求助? 3322389
关于积分的说明 10210090
捐赠科研通 3037746
什么是DOI,文献DOI怎么找? 1666872
邀请新用户注册赠送积分活动 797711
科研通“疑难数据库(出版商)”最低求助积分说明 758040