Evaluation of Temporomandibular Joint Disc Displacement with Magnetic Resonance Imaging Based Radiomics Analysis

人工智能 随机森林 支持向量机 磁共振成像 颞下颌关节 计算机科学 特征选择 逻辑回归 模式识别(心理学) 机器学习 峰度 数学 医学 口腔正畸科 放射科 统计
作者
Hazal Duyan Yüksel,Kaan Orhan,Burcu Evlice,Ömer Kaya
出处
期刊:Dentomaxillofacial Radiology [Oxford University Press]
卷期号:54 (1): 19-27 被引量:1
标识
DOI:10.1093/dmfr/twae066
摘要

Abstract Objectives The purpose of this study was to propose a machine learning model and assess its ability to classify temporomandibular joint (TMJ) disc displacements on MR T1-weighted and proton density-weighted images. Methods This retrospective cohort study included 180 TMJs from 90 patients with TMJ signs and symptoms. A radiomics platform was used to extract imaging features of disc displacements. Thereafter, different machine learning algorithms and logistic regression were implemented on radiomics features for feature selection, classification, and prediction. The radiomics features included first-order statistics, size- and shape-based features, and texture features. Six classifiers, including logistic regression, random forest, decision tree, k-nearest neighbours (KNN), XGBoost, and support vector machine were used for a model building which could predict the TMJ disc displacements. The performance of models was evaluated by sensitivity, specificity, and ROC curve. Results KNN classifier was found to be the most optimal machine learning model for prediction of TMJ disc displacements. The AUC, sensitivity, and specificity for the training set were 0.944, 0.771, 0.918 for normal, anterior disc displacement with reduction (ADDwR) and anterior disc displacement without reduction (ADDwoR) while testing set were 0.913, 0.716, and 1 for normal, ADDwR, and ADDwoR. For TMJ disc displacements, skewness, root mean squared, kurtosis, minimum, large area low grey level emphasis, grey level non-uniformity, and long-run high grey level emphasis, were selected as optimal features. Conclusions This study has proposed a machine learning model by KNN analysis on TMJ MR images, which can be used for TMJ disc displacements.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
张豪杰发布了新的文献求助10
刚刚
赘婿应助cjesty采纳,获得10
1秒前
所所应助无聊就学点采纳,获得10
2秒前
锅锅锅发布了新的文献求助10
3秒前
yuyu完成签到 ,获得积分10
5秒前
支灵珊发布了新的文献求助10
5秒前
和谐蛋蛋发布了新的文献求助10
6秒前
7秒前
星辰大海应助科研通管家采纳,获得10
9秒前
科研通AI5应助科研通管家采纳,获得10
9秒前
充电宝应助科研通管家采纳,获得30
9秒前
科研通AI5应助科研通管家采纳,获得10
9秒前
9秒前
华仔应助科研通管家采纳,获得10
9秒前
烟花应助科研通管家采纳,获得30
10秒前
搜集达人应助科研通管家采纳,获得10
10秒前
闪闪半芹发布了新的文献求助10
10秒前
隐形曼青应助科研通管家采纳,获得10
10秒前
HEIKU应助科研通管家采纳,获得10
10秒前
HEIKU应助科研通管家采纳,获得10
10秒前
思源应助科研通管家采纳,获得10
10秒前
所所应助科研通管家采纳,获得20
10秒前
华仔应助科研通管家采纳,获得10
10秒前
科研通AI5应助科研通管家采纳,获得10
10秒前
10秒前
10秒前
田様应助科研通管家采纳,获得10
11秒前
11秒前
传奇3应助alexyang采纳,获得10
12秒前
sa完成签到 ,获得积分10
12秒前
13秒前
orixero应助Lee采纳,获得10
13秒前
小蘑菇应助快乐保温杯采纳,获得10
13秒前
参上完成签到,获得积分10
14秒前
FashionBoy应助Micheallee采纳,获得10
15秒前
斯文败类应助闪闪半芹采纳,获得10
15秒前
上官若男应助jundading采纳,获得10
16秒前
希望天下0贩的0应助jimey采纳,获得10
16秒前
倾卿如玉完成签到 ,获得积分10
17秒前
纸包鱼发布了新的文献求助10
17秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Effective medium theory : principles and applications 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Translation and the Rediscovery of Rhetoric 200
Minimum Bar Spacing as a Function of Bond and Shear Strength 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3837089
求助须知:如何正确求助?哪些是违规求助? 3379220
关于积分的说明 10508210
捐赠科研通 3099045
什么是DOI,文献DOI怎么找? 1706738
邀请新用户注册赠送积分活动 821223
科研通“疑难数据库(出版商)”最低求助积分说明 772472