Adaptive Graph Learning with Semantic Promotability for Domain Adaptation

计算机科学 域适应 人工智能 图形 适应(眼睛) 领域(数学分析) 自然语言处理 机器学习 理论计算机科学 心理学 数学 分类器(UML) 数学分析 神经科学
作者
Zefeng Zheng,Shaohua Teng,Luyao Teng,Wei Zhang,Naiqi Wu
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:47 (3): 1747-1763
标识
DOI:10.1109/tpami.2024.3507534
摘要

Domain Adaptation (DA) is used to reduce cross-domain differences between the labeled source and unlabeled target domains. As the existing semantic-based DA approaches mainly focus on extracting consistent knowledge under semantic guidance, they may fail in acquiring (a) personalized knowledge between intra-class samples, and (b) local knowledge of neighbor samples from different categories. Hence, a multi-semantic-granularity and target-sample oriented approach, called Adaptive Graph Learning with Semantic Promotability (AGLSP), is proposed, which consists of three parts: (a) Adaptive Graph Embedding with Semantic Guidance (AGE-SG) that adaptively estimates the promotability of target samples and learns variant semantic and geometrical components from the source and those semantically promotable target samples; (b) Semantically Promotable Sample Enhancement (SPSE) that further increases the discriminability and adaptability of tag granularity by mining the features of intra-class source and semantically promotable target samples with multi-granularities; and (c) Adaptive Graph Learning with Implicit Semantic Preservation (AGL-ISP) that forms the tag granularity by extracting commonalities between the source and those semantically non-promotable target samples. As AGLSP learns more semantics from the two domains, more cross-domain knowledge is transferred. Mathematical proofs and extensive experiments on seven datasets demonstrate the performance of AGLSP.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
逗叉完成签到,获得积分10
1秒前
2秒前
VDC应助双丁宝贝采纳,获得30
2秒前
我是老大应助5High_0采纳,获得10
2秒前
Tang发布了新的文献求助10
2秒前
S1Mon发布了新的文献求助10
4秒前
LIEN应助淡淡天空采纳,获得10
4秒前
4秒前
整齐唯雪发布了新的文献求助100
5秒前
5秒前
7秒前
过时的沛槐完成签到,获得积分10
7秒前
早睡早起发布了新的文献求助10
8秒前
8秒前
有魅力的问儿完成签到 ,获得积分10
9秒前
10秒前
冰冰宝发布了新的文献求助10
11秒前
无极微光应助落寞的沛春采纳,获得20
11秒前
VDC应助双丁宝贝采纳,获得30
12秒前
干净的草丛完成签到,获得积分10
14秒前
14秒前
dadsafyf发布了新的文献求助10
14秒前
14秒前
大蛋老师应助shuker采纳,获得10
16秒前
17秒前
善学以致用应助张兰兰采纳,获得10
17秒前
18秒前
汉堡包应助vvvvkeke采纳,获得10
18秒前
18秒前
lifenghou完成签到 ,获得积分10
19秒前
上官若男应助S1Mon采纳,获得10
19秒前
19秒前
20秒前
Zx_1993应助kinstager采纳,获得10
20秒前
20秒前
20秒前
Tang完成签到,获得积分10
20秒前
22秒前
青蛙呱呱完成签到,获得积分10
22秒前
22秒前
高分求助中
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 720
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5588492
求助须知:如何正确求助?哪些是违规求助? 4671582
关于积分的说明 14787884
捐赠科研通 4625454
什么是DOI,文献DOI怎么找? 2531836
邀请新用户注册赠送积分活动 1500428
关于科研通互助平台的介绍 1468314