Concurrent Ischemic Lesion Age Estimation and Segmentation of CT Brain Using a Transformer-Based Network

计算机科学 杠杆(统计) 人工智能 分割 深度学习 分位数 病变 医学影像学 机器学习 缺血性中风 模式识别(心理学) 医学 统计 病理 数学 缺血 心脏病学
作者
Adam Marcus,Paul Bentley,Daniel Rueckert
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:42 (12): 3464-3473 被引量:8
标识
DOI:10.1109/tmi.2023.3287361
摘要

The cornerstone of stroke care is expedient management that varies depending on the time since stroke onset. Consequently, clinical decision making is centered on accurate knowledge of timing and often requires a radiologist to interpret Computed Tomography (CT) of the brain to confirm the occurrence and age of an event. These tasks are particularly challenging due to the subtle expression of acute ischemic lesions and the dynamic nature of their appearance. Automation efforts have not yet applied deep learning to estimate lesion age and treated these two tasks independently, so, have overlooked their inherent complementary relationship. To leverage this, we propose a novel end-to-end multi-task transformer-based network optimized for concurrent segmentation and age estimation of cerebral ischemic lesions. By utilizing gated positional self-attention and CT-specific data augmentation, the proposed method can capture long-range spatial dependencies while maintaining its ability to be trained from scratch under low-data regimes commonly found in medical imaging. Furthermore, to better combine multiple predictions, we incorporate uncertainty by utilizing quantile loss to facilitate estimating a probability density function of lesion age. The effectiveness of our model is then extensively evaluated on a clinical dataset consisting of 776 CT images from two medical centers. Experimental results demonstrate that our method obtains promising performance, with an area under the curve (AUC) of 0.933 for classifying lesion ages ≤ 4.5 hours compared to 0.858 using a conventional approach, and outperforms task-specific state-of-the-art algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
魔幻书包发布了新的文献求助10
2秒前
yyyxxx发布了新的文献求助10
3秒前
英俊的铭应助淡淡的大雁采纳,获得10
3秒前
闲闲发布了新的文献求助10
3秒前
熬夜猫完成签到,获得积分10
3秒前
虚幻星辰完成签到,获得积分10
3秒前
安之于数发布了新的文献求助10
3秒前
3秒前
黄勇发布了新的文献求助10
4秒前
kaige88完成签到,获得积分10
6秒前
科研通AI5应助高贵的沂采纳,获得10
6秒前
公西怜珊完成签到,获得积分10
7秒前
xie发布了新的文献求助10
7秒前
十一完成签到,获得积分10
7秒前
8秒前
10秒前
科研通AI5应助安之于数采纳,获得10
11秒前
虚幻星辰发布了新的文献求助10
11秒前
yyyxxx完成签到,获得积分10
11秒前
123456完成签到,获得积分10
12秒前
liang完成签到,获得积分10
12秒前
amy完成签到,获得积分10
12秒前
12秒前
闲闲完成签到,获得积分10
13秒前
13秒前
五五完成签到,获得积分10
13秒前
粥粥完成签到,获得积分10
13秒前
zj发布了新的文献求助10
14秒前
你所热爱的一切完成签到,获得积分10
14秒前
领导范儿应助不安姿采纳,获得10
15秒前
15秒前
15秒前
16秒前
石烟祝发布了新的文献求助10
16秒前
16秒前
123发布了新的文献求助10
16秒前
17秒前
玛琪玛小姐的狗完成签到,获得积分10
17秒前
廖同学完成签到 ,获得积分10
17秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Semantics for Latin: An Introduction 1099
Biology of the Indian Stingless Bee: Tetragonula iridipennis Smith 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 740
镇江南郊八公洞林区鸟类生态位研究 500
Thermal Quadrupoles: Solving the Heat Equation through Integral Transforms 500
Corpus Linguistics for Language Learning Research 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4139320
求助须知:如何正确求助?哪些是违规求助? 3676275
关于积分的说明 11620352
捐赠科研通 3370382
什么是DOI,文献DOI怎么找? 1851340
邀请新用户注册赠送积分活动 914489
科研通“疑难数据库(出版商)”最低求助积分说明 829266