作者
Andrej Ćorović,Meritxell Nus,Marta Peverelli,Deepa Gopalan,Patrick A. Calvert,Stephen P. Hoole,Roido Manavaki,Timothy D. Fryer,Luigi Aloj,Martin J. Graves,Marc R. Dweck,David E. Newby,Ziad Mallat,James H.F. Rudd,Jason M. Tarkin
摘要
Abstract Background After myocardial infarction (MI), inflammation and its resolution modulate the extent of myocardial damage. 68Ga-DOTATATE is a PET tracer that binds to somatostatin receptor 2 (SST2), which is up-regulated in pro-inflammatory macrophages [1]. Purpose We investigated 68Ga-DOTATATE PET/MRI for quantifying post-infarct myocardial inflammation. Methods In this prospective observational cohort study, participants with MI underwent 68Ga-DOTATATE PET/MRI at baseline (t0: <2 weeks post-MI) and 3 months (t3M). Patients with prior MI, heart failure, coronary revascularisation, or contraindication to PET/MRI, were excluded. Blood samples were taken at the time of imaging for high sensitivity CRP (hsCRP), high sensitivity troponin I (hsTnI), NTproBNP and peripheral blood monocyte subset counts measured by mass cytometry. 68Ga-DOTATATE maximum Standardised Uptake Values (SUV) and Tissue-to-Background Ratios (TBR) adjusted for blood pool activity were compared in the infarct defined by late gadolinium enhancement (LGE) MRI to remote myocardium at t0 and t3M. Results Thirty-two patients (mean age 59 [SD 9] years; 26 [81%] male and 6 [19%] female), comprised of 18 (56%) patients with ST elevation MI and 14 (44%) with non-ST elevation MI, were enrolled. Mean peak troponin was 16,953ng/L (range 408 to >25,000ng/L), and 16 (52%) patients had left ventricular impairment (ejection fraction <50%). 68Ga-DOTATATE PET signal co-localised with myocardial LGE and focal oedema (arrows) on T2-weighted MRI (Fig. 1; asterisk: culprit artery) and had excellent ability to discriminate infarct from remote regions (t0: infarct SUV 2.41 vs. remote 1.58, p<0.0001; t0: infarct TBR 5.08 vs. 3.35, p<0.0001; Fig. 2a). At 100 (SD 13) days after MI (n=23 patients), residual 68Ga-DOTATATE uptake in the infarct remained higher than remote myocardium (t3M: infarct SUV 1.88 vs. remote 1.27, p<0.0001; t3M: infarct TBR 3.96 vs. remote 2.73, p<0.0001), but was reduced compared to baseline (SUV −22%, p<0.0001; TBR −22%, p=0.002; Fig. 2b). Reduction in infarct 68Ga-DOTATATE uptake was consistent with overall decreases in hsCRP (2.16 vs. 8.76 mg/L), hsTnI (19 vs. 1365 ng/L) and NTproBNP (372 vs. 959 pg/mL) at t3M vs. t0 (n=23, all p<0.05). Focal oedema on MRI was resolved in 17 (74%) patients at t3M. Infarct-to-remote TBR ratio at t0 was correlated with hsTnI (r=0.35, p<0.05). At t3M (n=9 samples) vs t0 (n=20 samples), there was a reduction in % classical-to-non-classical ratio of peripheral monocytes (mean 6.5 [SD 3.8] vs. 14.4 [SD 11.2], p=0.005). Conclusions This is the first prospective study of serial 68Ga-DOTATATE PET/MRI in patients after MI. Here we show that 68Ga-DOTATATE tracks resolving myocardial inflammation. Ongoing work as part of this study seeks to confirm the cellular origin of infarct-related 68Ga-DOTATATE PET signal and SST2 expression within inflamed myocardial tissue, and test its longer-term association with ischaemic myocardial remodelling. Funding Acknowledgement Type of funding sources: Foundation. Main funding source(s): Wellcome TrustBritish Heart Foundation