Large Laser Spot-Swift Mapping Surface-Enhanced Raman Scattering on Ag Nanoparticle Substrates for Liquid Analysis in Serum-Based Cancer Diagnosis

拉曼散射 再现性 材料科学 癌胚抗原 纳米颗粒 激光器 分析化学(期刊) 癌症 表面增强拉曼光谱 拉曼光谱 分析物 纳米技术 色谱法 光学 化学 医学 物理 内科学
作者
Xiaoyu Zhang,Aoran Fan,Yuanming Pan,Xiang‐Qian Liu,Zitong Zhao,Yongmei Song,Xing Zhang
出处
期刊:ACS applied nano materials [American Chemical Society]
卷期号:5 (10): 15738-15747 被引量:5
标识
DOI:10.1021/acsanm.2c03782
摘要

We propose a label-free method to analyze bodily fluids based on surface-enhanced Raman scattering (SERS) with large laser spot-swift mapping and involving the electrochemistry preparation of silver nanoparticle substrates. This method can analyze the overall properties of multicomponent liquid and identify the low-concentration components. A large laser spot formed by a scanning galvanometer is used to obtain an average spectrum from different samples, whereas swift mapping detects low-concentration components such as tumor biomarkers. The silver nanoparticle substrates used exhibit strong SERS activity and wettability, improving adsorption and avoiding sample cluster formation. We applied this method to serum-based cancer diagnosis. Accuracy of the large spot method was tested by comparison with mass spectrometry results, whereas sensitivity of swift mapping was verified by detection of carcinoembryonic antigen in early colorectal cancer serum. Several cancer-related Raman peaks may be used as predictors, like a peak at 710 cm–1 which may represent an increase of circulating tumor DNA and metabolism disorder. We assess the potential application of this method for pan-cancer detection and staging. This method has advantage in sensitivity and reproducibility and is expected to play an important role in the analysis of complex component liquids that experience subtle changes that form on mechanism.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
酷炫大树发布了新的文献求助10
2秒前
2秒前
梨_完成签到,获得积分10
3秒前
minmin发布了新的文献求助10
3秒前
所所应助研友_841oDL采纳,获得30
4秒前
4秒前
swh发布了新的文献求助10
4秒前
4秒前
4秒前
善学以致用应助代杰居然采纳,获得10
4秒前
小任性完成签到 ,获得积分10
5秒前
陈秋妮完成签到,获得积分20
5秒前
5秒前
6秒前
顾矜应助陈展峰采纳,获得10
6秒前
丘比特应助yangbin710采纳,获得10
6秒前
阳光的小土豆完成签到,获得积分10
6秒前
1816013153发布了新的文献求助10
6秒前
吴华余发布了新的文献求助10
7秒前
科研通AI6应助拼搏的飞薇采纳,获得10
8秒前
夏天的蜜雪冰城完成签到,获得积分10
8秒前
麦麦发布了新的文献求助10
9秒前
赵浩楠发布了新的文献求助10
9秒前
9秒前
一只小小鸟完成签到 ,获得积分10
9秒前
深情安青应助耶耶耶耶采纳,获得10
10秒前
GEE完成签到,获得积分10
10秒前
zyt完成签到,获得积分10
11秒前
11秒前
再学一分钟完成签到,获得积分10
11秒前
胡莱发布了新的文献求助10
12秒前
13秒前
wanci应助龍Ryu采纳,获得10
13秒前
wxyshare举报闾丘惜萱求助涉嫌违规
13秒前
天天快乐应助bwh采纳,获得10
14秒前
bkagyin应助谦虚低调接地气采纳,获得10
14秒前
量子星尘发布了新的文献求助10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Washback Research in Language Assessment:Fundamentals and Contexts 400
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5469451
求助须知:如何正确求助?哪些是违规求助? 4572568
关于积分的说明 14336194
捐赠科研通 4499426
什么是DOI,文献DOI怎么找? 2465076
邀请新用户注册赠送积分活动 1453596
关于科研通互助平台的介绍 1428091