Machine learning-based prediction of disability risk in geriatric patients with hypertension for different time intervals

逻辑回归 医学 内科学
作者
Chaoyi Xiang,Yafei Wu,Maoni Jia,Ya Fang
出处
期刊:Archives of Gerontology and Geriatrics [Elsevier BV]
卷期号:105: 104835-104835 被引量:5
标识
DOI:10.1016/j.archger.2022.104835
摘要

The risk of disability in older adults with hypertension is substantially high, and prediction of disability risk is crucial for subsequent management. This study aimed to construct prediction models of disability risk for geriatric patients with hypertension at different time intervals, as well as to assess the important predictors and influencing factors of disability. This study collected data from the Chinese Longitudinal Healthy Longevity and Happy Family Study. There were 1576, 1083 and 506 hypertension patients aged 65+ in 2008 who were free of disability at baseline and had completed outcome information in follow-up of 2008-2012, 2008-2014, 2008-2018. We built five machine learning (ML) models to predict the disability risk. The classic statistical logistic regression (classic-LR) and shapley additive explanations (SHAP) was further introduced to explore possible causal factors and interpret the optimal models' decisions. Among the five ML models, logistic regression, extreme gradient boosting, and deep neural network were the optimal models for detecting 4-, 6-, and 10-year disability risk with their AUC-ROCs reached 0.759, 0.728, 0.694 respectively. The classic-LR revealed potential casual factors for disability and the results of SHAP demonstrated important features for risk prediction, reinforcing the trust of decision makers towards black-box models. The optimal models hold promise for screening out hypertensive old adults at high risk of disability to implement further targeted intervention and the identified key factors may be of additional value in analyzing the causal mechanisms of disability, thereby providing basis to practical application.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
雨之夏日完成签到,获得积分20
1秒前
蓝色的梦发布了新的文献求助10
1秒前
桐桐应助ifly采纳,获得10
2秒前
2秒前
2秒前
2秒前
Zjx应助务实的犀牛采纳,获得10
3秒前
虾米完成签到,获得积分10
3秒前
面包超人发布了新的文献求助10
4秒前
4秒前
繁多星发布了新的文献求助10
4秒前
丘比特应助ly采纳,获得10
5秒前
大方茹妖发布了新的文献求助10
5秒前
HUHU完成签到,获得积分10
5秒前
棉花糖完成签到,获得积分10
5秒前
111发布了新的文献求助10
6秒前
方勇飞发布了新的文献求助10
7秒前
柠檬发布了新的文献求助10
7秒前
执着的幻柏完成签到,获得积分10
9秒前
9秒前
10秒前
刘智山完成签到,获得积分10
10秒前
10秒前
11秒前
夕夜蟹完成签到,获得积分10
12秒前
13秒前
Lzk驳回了思源应助
13秒前
稳重中心发布了新的文献求助10
14秒前
方勇飞完成签到,获得积分10
14秒前
Jasper应助勤劳的小蜜蜂采纳,获得10
14秒前
简单发布了新的文献求助10
15秒前
orixero应助温金凤采纳,获得10
15秒前
林小雨完成签到,获得积分10
15秒前
Jenny发布了新的文献求助10
15秒前
大方茹妖完成签到,获得积分10
16秒前
罗奕芳发布了新的文献求助10
16秒前
光亮夏槐发布了新的文献求助10
17秒前
雨之夏日发布了新的文献求助10
19秒前
李健应助郁金香采纳,获得10
19秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
The phrasal lexicon 200
Solving Nonlinear Equations with Newton's Method 200
Reference Guide for Dynamic Models of HVAC Equipment 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3836164
求助须知:如何正确求助?哪些是违规求助? 3378566
关于积分的说明 10504737
捐赠科研通 3098105
什么是DOI,文献DOI怎么找? 1706273
邀请新用户注册赠送积分活动 820936
科研通“疑难数据库(出版商)”最低求助积分说明 772348