Contrastive Domain Adaptation for Early Misinformation Detection

误传 计算机科学 人工智能 先验概率 杠杆(统计) 域适应 机器学习 模式识别(心理学) 分类器(UML) 贝叶斯概率 计算机安全
作者
Zhenrui Yue,Huimin Zeng,Ziyi Kou,Lanyu Shang,Dong Wang
标识
DOI:10.1145/3511808.3557263
摘要

Despite recent progress in improving the performance of misinformation detection systems, classifying misinformation in an unseen domain remains an elusive challenge. To address this issue, a common approach is to introduce a domain critic and encourage domain-invariant input features. However, early misinformation often demonstrates both conditional and label shifts against existing misinformation data (e.g., class imbalance in COVID-19 datasets), rendering such methods less effective for detecting early misinformation. In this paper, we propose contrastive adaptation network for early misinformation detection (CANMD). Specifically, we leverage pseudo labeling to generate high-confidence target examples for joint training with source data. We additionally design a label correction component to estimate and correct the label shifts (i.e., class priors) between the source and target domains. Moreover, a contrastive adaptation loss is integrated in the objective function to reduce the intra-class discrepancy and enlarge the inter-class discrepancy. As such, the adapted model learns corrected class priors and an invariant conditional distribution across both domains for improved estimation of the target data distribution. To demonstrate the effectiveness of the proposed CANMD, we study the case of COVID-19 early misinformation detection and perform extensive experiments using multiple real-world datasets. The results suggest that CANMD can effectively adapt misinformation detection systems to the unseen COVID-19 target domain with significant improvements compared to the state-of-the-art baselines.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
陶醉的大白完成签到 ,获得积分10
2秒前
2秒前
玛斯特尔完成签到,获得积分10
3秒前
4秒前
cc发布了新的文献求助20
4秒前
6秒前
ly完成签到 ,获得积分10
8秒前
Yuna完成签到,获得积分10
8秒前
Wangjingxuan完成签到,获得积分10
8秒前
10秒前
紫罗兰花海完成签到 ,获得积分10
12秒前
13秒前
Ws完成签到,获得积分10
15秒前
cc完成签到,获得积分10
16秒前
Orange应助wuxunxun2015采纳,获得10
17秒前
罗伊黄完成签到 ,获得积分10
19秒前
DDDOG发布了新的文献求助10
21秒前
BZPL完成签到,获得积分10
23秒前
orixero应助碧蓝的曼岚采纳,获得10
24秒前
科研通AI2S应助搞怪的紫易采纳,获得10
24秒前
可靠的白竹完成签到 ,获得积分10
27秒前
沉默寻凝完成签到,获得积分10
29秒前
今天想吃披萨完成签到,获得积分10
31秒前
33秒前
消烦员完成签到,获得积分20
34秒前
彭于晏应助123采纳,获得10
35秒前
36秒前
丰富的不惜完成签到,获得积分10
37秒前
3D完成签到 ,获得积分10
37秒前
38秒前
38秒前
39秒前
39秒前
科研通AI5应助冯昊采纳,获得10
41秒前
42秒前
wuxunxun2015发布了新的文献求助10
43秒前
44秒前
王博士完成签到 ,获得积分10
45秒前
顺心毛巾完成签到,获得积分10
45秒前
47秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Production Logging: Theoretical and Interpretive Elements 3000
CRC Handbook of Chemistry and Physics 104th edition 1000
Izeltabart tapatansine - AdisInsight 600
Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
Individualized positive end-expiratory pressure in laparoscopic surgery: a randomized controlled trial 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3761742
求助须知:如何正确求助?哪些是违规求助? 3305515
关于积分的说明 10134536
捐赠科研通 3019564
什么是DOI,文献DOI怎么找? 1658216
邀请新用户注册赠送积分活动 791974
科研通“疑难数据库(出版商)”最低求助积分说明 754751