Identify Consistent Imaging Genomic Biomarkers for Characterizing the Survival-Associated Interactions Between Tumor-Infiltrating Lymphocytes and Tumors

乳腺癌 计算机科学 癌症 计算生物学 肿瘤浸润淋巴细胞 生物 医学 内科学 免疫疗法
作者
Yingli Zuo,Yawen Wu,Zixiao Lu,Qi Zhu,Kun Huang,Daoqiang Zhang,Wei Shao
出处
期刊:Lecture Notes in Computer Science 卷期号:: 222-231 被引量:5
标识
DOI:10.1007/978-3-031-16434-7_22
摘要

The tumor-infiltrating lymphocytes (TILs) and its correlation with tumors play a critical role in the development and progression of breast cancer. Existing studies have demonstrated that the combination of the whole-slide pathological images (WSIs) and genomic data can better characterize the immunological mechanisms of TILs and assess the prognostic outcome in breast cancer. However, it is still very challenging to characterize the intersections between TILs and tumors in WSIs because of their large size and heterogeneity patterns, and the high dimensional genomic data also brings difficulty for the integrative analysis with WSIs data. To address the above challenges, in this paper, we propose an interpretable multi-modal fusion framework, IMGFN, that can fuse the interaction information between TILs and tumors with the genomic data via an attention mechanism for prognosis predictions of breast cancer. Specifically, for WSIs data, we use the graph attention network (i.e., GAT) to describe the spatial interactions of TILs and tumor regions across WSIs. As to genomic data, we use co-expression network analysis algorithms to cluster genes into co-expressed modules followed by applying the Concrete Autoencoders to select survival-associated modules. Finally, a self-attention layer is adopted to combine both the imaging and genomic features for the prognosis prediction of breast cancer. The experimental results on The Cancer Genome Atlas(TCGA) dataset suggest that the proposed IMGFN can not only achieve better prognosis results than the comparing methods but also identify consistent survival-associated imaging and genomic biomarkers correlated strongly with the interaction between TILs and tumors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
来都来了发布了新的文献求助10
刚刚
哈哈一世发布了新的文献求助10
1秒前
faye发布了新的文献求助10
2秒前
kyfw应助蓝蓝采纳,获得20
3秒前
段盼兰完成签到,获得积分0
3秒前
林夏发布了新的文献求助10
3秒前
活泼的薯片关注了科研通微信公众号
4秒前
刘春林发布了新的文献求助10
5秒前
天天快乐应助dingtc0609_采纳,获得10
5秒前
6秒前
CanadaPaoKing完成签到 ,获得积分10
7秒前
贪玩手链完成签到 ,获得积分10
8秒前
脑洞疼应助sun采纳,获得10
9秒前
思源应助渡鸦采纳,获得10
10秒前
Xiaoxiao给ZHQ的求助进行了留言
10秒前
徐石龙应助平淡的茹妖采纳,获得10
11秒前
13秒前
14秒前
锦城纯契完成签到 ,获得积分10
15秒前
16秒前
chengcc发布了新的文献求助10
17秒前
17秒前
17秒前
假装有昵称完成签到,获得积分10
17秒前
18秒前
19秒前
faye完成签到,获得积分10
19秒前
20秒前
sun发布了新的文献求助10
20秒前
林夏发布了新的文献求助10
21秒前
21秒前
22秒前
22秒前
wuzihao发布了新的文献求助10
22秒前
23秒前
wantong发布了新的文献求助10
23秒前
段笙完成签到,获得积分10
23秒前
LBQ完成签到,获得积分10
24秒前
bkagyin应助ani采纳,获得10
25秒前
25秒前
高分求助中
【请各位用户详细阅读此贴后再求助】科研通的精品贴汇总(请勿应助) 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 500
Maritime Applications of Prolonged Casualty Care: Drowning and Hypothermia on an Amphibious Warship 500
Comparison analysis of Apple face ID in iPad Pro 13” with first use of metasurfaces for diffraction vs. iPhone 16 Pro 500
Towards a $2B optical metasurfaces opportunity by 2029: a cornerstone for augmented reality, an incremental innovation for imaging (YINTR24441) 500
Materials for Green Hydrogen Production 2026-2036: Technologies, Players, Forecasts 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4056189
求助须知:如何正确求助?哪些是违规求助? 3594277
关于积分的说明 11419707
捐赠科研通 3320136
什么是DOI,文献DOI怎么找? 1825593
邀请新用户注册赠送积分活动 896641
科研通“疑难数据库(出版商)”最低求助积分说明 817971