A graph based preordonnances theoretic supervised feature selection in high dimensional data

特征选择 判别式 计算机科学 范畴变量 模式识别(心理学) 冗余(工程) 人工智能 图形 数据挖掘 集团 特征(语言学) 支持向量机 二进制数 机器学习 数学 理论计算机科学 组合数学 操作系统 语言学 哲学 算术
作者
Hasna Chamlal,Tayeb Ouaderhman,Fadwa Aaboub
出处
期刊:Knowledge Based Systems [Elsevier BV]
卷期号:257: 109899-109899 被引量:15
标识
DOI:10.1016/j.knosys.2022.109899
摘要

Generally, for high-dimensional datasets, only some features are relevant, while others are irrelevant or redundant. In the machine learning field, the use of a strategy for eliminating insignificant features from a dataset is very important for the classification task. Feature selection is the process of identifying the most informative features that help in predicting sample classes efficiently in order to achieve better classification performance. In this research paper, a new hybrid feature selection strategy for high-dimensional datasets is proposed to find the most discriminative subset of features for the dataset with the irrelevant and redundant features discarded. The proposed algorithm is called Maximal Clique based on the coefficients Ψ (MaCΨ algorithm). The MaCΨ method has the capability to handle categorical, numerical, and hybrid datasets. Furthermore, it can be applied either to binary or multi-class classification problems. The global structure of the MaCΨ algorithm can be described by three steps. In the first step, a weight is proposed to evaluate the importance of each feature in the dataset by balancing the trade-off between two novel measures of relevance and redundancy, and then the K most important features are selected to form the candidate subset, where K is taken as user input. In the second phase, a wrapper method based on graph theory is applied to the subset retained from the first step to extract the optimal subset of features. In the last stage, the final subset of features with the highest classification performance and the lowest number of features is obtained by applying the backward elimination algorithm to the optimal subset. The performance of the MaCΨ methodology is investigated on artificial as well as real-world datasets with different dimensionalities. The statistical analysis of the experimental results clearly indicates that the MaCΨ approach achieves competitive results in terms of the classification accuracy and the number of selected features compared with some state-of-the-art approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
端庄幻桃完成签到 ,获得积分10
刚刚
1秒前
2秒前
2秒前
3秒前
ZXJ1009完成签到,获得积分10
4秒前
老阎应助沉默惋庭采纳,获得30
5秒前
可爱的函函应助吴晓敏采纳,获得10
6秒前
等待孤云发布了新的文献求助10
7秒前
ZXJ1009发布了新的文献求助10
7秒前
lucaslucas完成签到,获得积分10
7秒前
chiyudoubao完成签到,获得积分10
9秒前
15秒前
15秒前
虚拟的秋寒完成签到,获得积分10
17秒前
20秒前
20秒前
22秒前
济民财完成签到,获得积分10
23秒前
23秒前
lin发布了新的文献求助10
23秒前
李小聪发布了新的文献求助10
25秒前
纯真智宸完成签到,获得积分10
25秒前
pupu完成签到,获得积分10
26秒前
26秒前
xx发布了新的文献求助10
29秒前
29秒前
等待孤云完成签到,获得积分10
31秒前
量子星尘发布了新的文献求助10
31秒前
32秒前
打打应助哈哈哈哈哈采纳,获得10
33秒前
申锴发布了新的文献求助10
35秒前
绿绿完成签到,获得积分10
35秒前
咕噜完成签到 ,获得积分10
36秒前
37秒前
艺凯完成签到,获得积分10
38秒前
leyangya完成签到,获得积分10
39秒前
我是老大应助KALIdemo158采纳,获得10
41秒前
香蕉觅云应助申锴采纳,获得10
43秒前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
The Oxford Encyclopedia of the History of Modern Psychology 1500
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
The Martian climate revisited: atmosphere and environment of a desert planet 800
Parametric Random Vibration 800
Building Quantum Computers 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3864803
求助须知:如何正确求助?哪些是违规求助? 3407269
关于积分的说明 10653363
捐赠科研通 3131275
什么是DOI,文献DOI怎么找? 1726909
邀请新用户注册赠送积分活动 832096
科研通“疑难数据库(出版商)”最低求助积分说明 780127