清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Neural network training method for materials science based on multi-source databases

互操作性 计算机科学 困境 数据库 人工神经网络 带宽(计算) 过程(计算) 数据挖掘 数据科学 机器学习 万维网 计算机网络 认识论 哲学 操作系统
作者
Jialong Guo,Ziyi Chen,Zhiwei Liu,Xianwei Li,Z. Y. Xie,Zongguo Wang,Yangang Wang
出处
期刊:Scientific Reports [Springer Nature]
卷期号:12 (1): 15326-15326 被引量:10
标识
DOI:10.1038/s41598-022-19426-8
摘要

Abstract The fourth paradigm of science has achieved great success in material discovery and it highlights the sharing and interoperability of data. However, most material data are scattered among various research institutions, and a big data transmission will consume significant bandwidth and tremendous time. At the meanwhile, some data owners prefer to protect the data and keep their initiative in the cooperation. This dilemma gradually leads to the “data island” problem, especially in material science. To attack the problem and make full use of the material data, we propose a new strategy of neural network training based on multi-source databases. In the whole training process, only model parameters are exchanged and no any external access or connection to the local databases. We demonstrate its validity by training a model characterizing material structure and its corresponding formation energy, based on two and four local databases, respectively. The results show that the obtained model accuracy trained by this method is almost the same to that obtained from a single database combining all the local ones. Moreover, different communication frequencies between the client and server are also studied to improve the model training efficiency, and an optimal frequency is recommended.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
11秒前
18秒前
39秒前
学生信的大叔完成签到,获得积分10
54秒前
1分钟前
1分钟前
1分钟前
1分钟前
白华苍松发布了新的文献求助10
1分钟前
1分钟前
2分钟前
2分钟前
2分钟前
2分钟前
silence完成签到 ,获得积分10
2分钟前
咯咯咯完成签到 ,获得积分10
3分钟前
ccl发布了新的文献求助10
3分钟前
3分钟前
3分钟前
Benhnhk21完成签到,获得积分10
4分钟前
科研通AI6应助华杰采纳,获得10
4分钟前
4分钟前
Moto_Fang完成签到 ,获得积分10
4分钟前
华杰完成签到,获得积分10
4分钟前
yipmyonphu应助科研通管家采纳,获得10
4分钟前
4分钟前
5分钟前
白华苍松发布了新的文献求助10
5分钟前
ccl完成签到,获得积分10
5分钟前
5分钟前
6分钟前
shhoing应助niko采纳,获得10
6分钟前
领导范儿应助niko采纳,获得10
6分钟前
酷波er应助niko采纳,获得10
6分钟前
科研通AI2S应助niko采纳,获得10
6分钟前
小蘑菇应助niko采纳,获得10
6分钟前
6分钟前
爆米花应助白华苍松采纳,获得10
6分钟前
6分钟前
muriel完成签到,获得积分0
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Nonlinear Problems of Elasticity 3000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Minimizing the Effects of Phase Quantization Errors in an Electronically Scanned Array 1000
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5534469
求助须知:如何正确求助?哪些是违规求助? 4622450
关于积分的说明 14582630
捐赠科研通 4562656
什么是DOI,文献DOI怎么找? 2500278
邀请新用户注册赠送积分活动 1479820
关于科研通互助平台的介绍 1451022