已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Hashing-Based Deep Metric Learning for the Classification of Hyperspectral and LiDAR Data

激光雷达 计算机科学 高光谱成像 人工智能 模式识别(心理学) 公制(单位) 特征(语言学) 散列函数 特征提取 测距 遥感 深度学习 数据挖掘 地理 运营管理 计算机安全 经济 电信 语言学 哲学
作者
Weiwei Song,Yong Dai,Zhi Gao,Leyuan Fang,Yongjun Zhang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-13 被引量:21
标识
DOI:10.1109/tgrs.2023.3321057
摘要

Multisource remote sensing data provide abundant and complementary information for land cover classification. Existing classification methods mainly focus on designing a multi-stream deep network to extract separate features of each single-source data, then adopting a fusing strategy to combine these extracted features for final classification. However, this kind of method neglects the sample correlation of single-source and cross-source data, which may deliver an unsatisfactory classification result when dealing with high intraclass-variability and low interclass-variability samples. To this end, a novel hashing-based deep metric learning (HDML) method is proposed for hyperspectral images (HSIs) and light detection and ranging (LiDAR) data classification in this paper. First, a two-stream deep network is built to extract the spectral-spatial features of HSI and the elevation features of LiDAR, respectively. To fully use the complementary and correlated information of HSI and LiDAR data, we adopt attention-based feature fusion (AFF) modules to deliver a high-discrimination fused feature both for cross-source and single-source feature fusion. Then, the extracted features are fed into fully connected layers to generate class probabilities, respectively. Different from most existing methods that only utilize semantic information of samples, we elaborately designed a loss function to simultaneously consider the label-based semantic loss and hashing-based metric loss. Finally, a decision-level fusion strategy is adopted to further improve the classification results. Extensive experiments on three public HSI and LiDAR data sets demonstrate the effectiveness of the proposed method over some state-of-the-art approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
浮游应助科研通管家采纳,获得10
刚刚
d83应助科研通管家采纳,获得10
刚刚
香蕉觅云应助科研通管家采纳,获得30
刚刚
浮游应助科研通管家采纳,获得10
刚刚
烟花应助科研通管家采纳,获得10
刚刚
FashionBoy应助科研通管家采纳,获得10
1秒前
1秒前
Jasper应助科研通管家采纳,获得10
1秒前
霍巧凡完成签到,获得积分10
3秒前
shusen完成签到,获得积分10
3秒前
Wilddeer完成签到 ,获得积分10
4秒前
spark完成签到,获得积分10
5秒前
百别发布了新的文献求助30
6秒前
6秒前
Cao完成签到 ,获得积分10
7秒前
7秒前
11秒前
研友_VZG7GZ应助apwi采纳,获得10
11秒前
12秒前
可靠冰凡完成签到,获得积分10
12秒前
12秒前
欣欣大王发布了新的文献求助10
13秒前
13秒前
Mylong发布了新的文献求助10
14秒前
小菜鸟发布了新的文献求助10
14秒前
噜噜噜霸霸完成签到,获得积分10
14秒前
11112321321完成签到 ,获得积分10
15秒前
Lesley发布了新的文献求助10
16秒前
小蘑菇应助km采纳,获得10
19秒前
南浔发布了新的文献求助10
22秒前
叡叡发布了新的文献求助10
23秒前
小菲完成签到 ,获得积分10
24秒前
科研通AI5应助百别采纳,获得10
24秒前
abc完成签到,获得积分10
25秒前
晓鸭的平凡世界完成签到,获得积分10
25秒前
最好的发布了新的文献求助10
25秒前
科研通AI2S应助大圣采纳,获得10
25秒前
田様应助小菜鸟采纳,获得30
26秒前
27秒前
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Determination of the boron concentration in diamond using optical spectroscopy 600
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Founding Fathers The Shaping of America 500
A new house rat (Mammalia: Rodentia: Muridae) from the Andaman and Nicobar Islands 500
Research Handbook on Law and Political Economy Second Edition 398
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4552125
求助须知:如何正确求助?哪些是违规求助? 3981473
关于积分的说明 12326781
捐赠科研通 3651032
什么是DOI,文献DOI怎么找? 2010816
邀请新用户注册赠送积分活动 1045964
科研通“疑难数据库(出版商)”最低求助积分说明 934468