NASICON-Type NaTi2(PO4)3 Surface Modified O3-Type NaNi0.3Fe0.2Mn0.5O2 for High-Performance Cathode Material for Sodium-Ion Batteries

材料科学 涂层 电化学 阴极 电解质 快离子导体 化学工程 电极 图层(电子) 容量损失 分析化学(期刊) 纳米技术 化学 色谱法 物理化学 工程类
作者
Shuangwu Xu,Hongxia Chen,Xinyu Zhang,Mengcheng Zhou,Hongming Zhou
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:15 (40): 47764-47778 被引量:31
标识
DOI:10.1021/acsami.3c09876
摘要

Sodium-ion batteries (SIBs) have shown great potential as energy storage devices due to their low price and abundant sodium content. Among them, O3-type layered oxides are a promising cathode material for sodium-ion batteries; however, most of them suffer from slow kinetics and unfavorable structural stability, which seriously hinder their practical application. O3-NaNi0.3Fe0.2Mn0.5O2 surface modification is performed by a simple wet chemical method of coating NaTi2(PO4)3 on the surface. The NASICON-type NaTi2(PO4)3 coating layer has a special three-dimensional channel, which facilitates the rapid migration of Na+, and the NaTi2(PO4)3 coating layer also prevents direct contact between the electrode and the electrolyte, ensuring the stability of the interface. In addition, the NaTi2(PO4)3 coating layer induces part of the Ti4+ doping into the transition metal layer of NaNi0.3Fe0.2Mn0.5O2, which increases the stability of the transition metal layer and reduces the resistance of Na+ diffusion. More importantly, the NaTi2(PO4)3 coating layer can suppress the O3-P3 phase transition and reduce the volume change of the materials throughout the charge/discharge process. Thus, the NaTi2(PO4)3 coating layer can effectively improve the electrochemical performance of the cathode materials. The NFM@NTP3 has a capacity retention of 86% (2.0-4.0 V vs Na+/Na, 300 cycles) and 85% (2.0-4.2 V vs Na+/Na, 100 cycles) at 1C and a discharge capacity of 107 mAh g-1 (2.0-4.0 V vs Na+/Na) and 125 mAh g-1 (2.0-4.2 V vs Na+/Na) at 10C, respectively. Therefore, this surface modification strategy provides a simple and effective way to design and develop high-performance layered oxide cathode materials for sodium-ion batteries.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
户户得振发布了新的文献求助10
刚刚
1秒前
1秒前
1秒前
3秒前
糖霜烤面包完成签到,获得积分10
3秒前
dxm发布了新的文献求助10
4秒前
量子星尘发布了新的文献求助150
5秒前
黎笙发布了新的文献求助10
5秒前
6秒前
木子李发布了新的文献求助10
6秒前
慕青应助温木成林采纳,获得10
7秒前
7秒前
研友_VZG7GZ应助陈文海采纳,获得30
8秒前
8秒前
8秒前
星辰大海应助ac采纳,获得10
8秒前
自由扬应助户户得振采纳,获得10
8秒前
雨0926应助科研通管家采纳,获得30
8秒前
小蘑菇应助科研通管家采纳,获得30
8秒前
科研通AI6应助科研通管家采纳,获得10
8秒前
9秒前
小蘑菇应助科研通管家采纳,获得10
9秒前
在水一方应助科研通管家采纳,获得10
9秒前
酷波er应助科研通管家采纳,获得10
9秒前
orixero应助科研通管家采纳,获得30
9秒前
田様应助科研通管家采纳,获得10
9秒前
NanFeng完成签到,获得积分10
9秒前
Ava应助科研通管家采纳,获得10
9秒前
科研通AI5应助科研通管家采纳,获得10
9秒前
Akim应助科研通管家采纳,获得10
9秒前
科研通AI6应助科研通管家采纳,获得10
10秒前
李健应助科研通管家采纳,获得10
10秒前
科研通AI2S应助科研通管家采纳,获得10
10秒前
汉堡包应助科研通管家采纳,获得10
10秒前
科研通AI6应助科研通管家采纳,获得30
10秒前
CodeCraft应助科研通管家采纳,获得10
10秒前
彭于晏应助科研通管家采纳,获得10
10秒前
科研通AI6应助科研通管家采纳,获得10
10秒前
今后应助科研通管家采纳,获得10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
Optimisation de cristallisation en solution de deux composés organiques en vue de leur purification 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5040336
求助须知:如何正确求助?哪些是违规求助? 4271796
关于积分的说明 13318269
捐赠科研通 4083808
什么是DOI,文献DOI怎么找? 2234253
邀请新用户注册赠送积分活动 1241925
关于科研通互助平台的介绍 1168574