亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Machine learning-based approaches to enhance the soil fertility—A review

土壤肥力 生育率 环境科学 农业 农业工程 肥料 土工试验 农业土壤学 计算机科学 土壤生物多样性 农学 土壤水分 土壤科学 人口 工程类 医学 环境卫生 生物 生态学
作者
M. Sujatha,Jaidhar C.D.
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:240: 122557-122557 被引量:12
标识
DOI:10.1016/j.eswa.2023.122557
摘要

Agriculture plays an imperative role in many countries’ economies and is a substantive source of survival. The variation in a soil nutrient decreases crop yield. An accurate soil fertility classification and application of fertilizers are essential for enhancing crop productivity. Currently, soil fertility levels are assessed through laboratory testing of soil samples, and fertilizers are applied randomly. This traditional practice increases fertilization costs and causes environmental pollution. Thus, it is necessary to develop robust and inexpensive soil fertility classification and fertilizer application. This study identifies the machine learning (ML) or deep learning-based soil fertility classifications. A comprehensive review is conducted according to Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. The purpose of this study is to examine different approaches that researchers use to predict or classify soil fertility. It also discusses the fertilizer recommendation developed by the researchers. The earlier research showed that ML-based approaches could accurately classify soil fertility. Furthermore, this study discusses the importance of soil nutrients and preventive measures to be taken on the imbalance of soil nutrients. This study explores research gaps and challenges in soil fertility classification and fertilizer recommendation systems. Most studies predicted the fertility levels of soil parameters, whereas a few researchers classified soil fertility. Few researchers recommended fertilizers for soil nutrient depletion. Most studies relied on expensive laboratory measurements or regional soil data collected from satellites. Based on the identified research gaps, this study suggests potential future research possibilities in soil fertility classification and the recommendation of fertilizers. It aims to develop a low-cost soil fertility classifier to prescribe fertilizers. The developed model can help farmers to enhance soil fertility with reduced fertilization costs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
莫妮卡卡发布了新的文献求助10
1秒前
无花果应助聪明的心语采纳,获得10
2秒前
9秒前
10秒前
14秒前
15秒前
TIWOSS发布了新的文献求助10
16秒前
Albert完成签到,获得积分10
17秒前
冰西瓜完成签到 ,获得积分10
17秒前
莫妮卡卡发布了新的文献求助10
20秒前
甜美的秋尽完成签到,获得积分10
20秒前
sycsyc完成签到,获得积分10
23秒前
Dream点壹完成签到,获得积分10
24秒前
wcc发布了新的文献求助30
26秒前
香蕉觅云应助TIWOSS采纳,获得10
30秒前
李健的小迷弟应助熊猫侠采纳,获得10
30秒前
科研通AI5应助皮代谷采纳,获得150
31秒前
天天好心覃完成签到 ,获得积分10
32秒前
gxmu6322完成签到,获得积分10
33秒前
莫妮卡卡发布了新的文献求助10
35秒前
潮人完成签到 ,获得积分10
35秒前
科研通AI2S应助科研通管家采纳,获得10
35秒前
科研通AI2S应助科研通管家采纳,获得30
35秒前
Eugene完成签到,获得积分10
36秒前
xiuxiuzhang完成签到 ,获得积分10
37秒前
千纸鹤完成签到 ,获得积分10
38秒前
38秒前
顾矜应助momo采纳,获得10
40秒前
熊猫侠发布了新的文献求助10
42秒前
wcc完成签到,获得积分20
43秒前
oleskarabach完成签到,获得积分20
45秒前
yema完成签到 ,获得积分10
45秒前
45秒前
50秒前
皮代谷发布了新的文献求助150
51秒前
莫妮卡卡发布了新的文献求助10
51秒前
52秒前
53秒前
聪明的心语关注了科研通微信公众号
57秒前
刀特左发布了新的文献求助10
57秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
A China diary: Peking 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3784786
求助须知:如何正确求助?哪些是违规求助? 3330050
关于积分的说明 10244053
捐赠科研通 3045345
什么是DOI,文献DOI怎么找? 1671626
邀请新用户注册赠送积分活动 800524
科研通“疑难数据库(出版商)”最低求助积分说明 759483