膜
聚吡咯
纳滤
化学工程
材料科学
石墨烯
氧化物
离子
氧化还原
多孔性
电极
磁导率
肿胀 的
选择性
纳米技术
化学
电化学
复合材料
有机化学
生物化学
工程类
催化作用
物理化学
冶金
作者
You Wu,Zhenao Gu,Chenghai Lu,Chengzhi Hu,Jiuhui Qu
出处
期刊:Water Research
[Elsevier BV]
日期:2023-08-11
卷期号:244: 120478-120478
被引量:5
标识
DOI:10.1016/j.watres.2023.120478
摘要
Regulating ion transport behavior through pore size variation is greatly attractive for membrane to meet the need for precise separation, but fabricating nanofiltration (NF) membranes with tunable pore size remains a huge challenge. Herein, a NF membrane with electrically tunable pores was fabricated by intercalating polypyrrole into reduced graphene oxide interlayers. As the potential switches from reduction to oxidation, the membrane pore size shrinks by 11%, resulting in a 16.2% increase in salt rejection. The membrane pore size expands/contracts at redox potentials due to the polypyrrole volume swelling/shrinking caused by the insertion/desertion of cations, respectively. In terms of the inserted cation, Na+ and K+ induce larger pore-size stretching range for the membrane than Ca2+ due to greater binding energy and larger doping amount. Such an electrical response characteristic remained stable after multiple cycles and enabled application in ion selective separation; e.g., the Na+/Mg2+ separation factor in the reduced state is increased by 41% compared to that in the oxide state. This work provides electrically tunable nanochannels for high-precision separation applications such as valuable substance purification and resource recovery from wastewater.
科研通智能强力驱动
Strongly Powered by AbleSci AI