SRFormer: Efficient Yet Powerful Transformer Network for Single Image Super Resolution

计算机科学 变压器 人工智能 卷积神经网络 模式识别(心理学) 机器学习 计算机工程 工程类 电压 电气工程
作者
Armin Mehri,Parichehr Behjati,Darío Carpio,Ángel D. Sappa
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:11: 121457-121469 被引量:4
标识
DOI:10.1109/access.2023.3328229
摘要

Recent breakthroughs in single image super resolution have investigated the potential of deep Convolutional Neural Networks (CNNs) to improve performance. However, CNNs based models suffer from their limited fields and their inability to adapt to the input content. Recently, Transformer based models were presented, which demonstrated major performance gains in Natural Language Processing and Vision tasks while mitigating the drawbacks of CNNs. Nevertheless, Transformer computational complexity can increase quadratically for high-resolution images, and the fact that it ignores the original structures of the image by converting them to the 1D structure can make it problematic to capture the local context information and adapt it for real-time applications. In this paper, we present, SRFormer, an efficient yet powerful Transformer-based architecture, by making several key designs in the building of Transformer blocks and Transformer layers that allow us to consider the original structure of the image (i.e., 2D structure) while capturing both local and global dependencies without raising computational demands or memory consumption. We also present a Gated Multi-Layer Perceptron (MLP) Feature Fusion module to aggregate the features of different stages of Transformer blocks by focusing on inter-spatial relationships while adding minor computational costs to the network. We have conducted extensive experiments on several super-resolution benchmark datasets to evaluate our approach. SRFormer demonstrates superior performance compared to state-of-the-art methods from both Transformer and Convolutional networks, with an improvement margin of 0.1 ~ 0.53 dB . Furthermore, while SRFormer has almost the same model size, it outperforms SwinIR by 0.47% and inference time by half the time of SwinIR. The code will be available on GitHub.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
充电宝应助甜不腻采纳,获得20
1秒前
Tq完成签到,获得积分10
1秒前
1秒前
科研通AI6应助早起采纳,获得10
1秒前
rongyiming发布了新的文献求助10
1秒前
JJJLX关注了科研通微信公众号
2秒前
Mic应助火星上又琴采纳,获得10
2秒前
我是老大应助火星上又琴采纳,获得10
2秒前
huan1627发布了新的文献求助10
2秒前
zv完成签到,获得积分20
2秒前
Lucas应助眯眯眼的思枫采纳,获得10
2秒前
水熊虫发布了新的文献求助10
3秒前
迷人书蝶发布了新的文献求助10
3秒前
酷波er应助zkc采纳,获得10
3秒前
张茜茜发布了新的文献求助10
4秒前
Ava应助爱听歌傲菡采纳,获得10
4秒前
5秒前
5秒前
5秒前
量子星尘发布了新的文献求助10
5秒前
MSG完成签到,获得积分10
5秒前
6秒前
门牙完成签到,获得积分10
7秒前
Levieus完成签到,获得积分10
7秒前
rongyiming完成签到,获得积分10
7秒前
8秒前
薅羊毛的咖啡关注了科研通微信公众号
8秒前
8秒前
青柠七号站完成签到,获得积分10
8秒前
雪影发布了新的文献求助10
9秒前
9秒前
听话的箴完成签到,获得积分10
9秒前
椰奶西瓜完成签到,获得积分10
9秒前
9秒前
9秒前
10秒前
WB发布了新的文献求助10
10秒前
宋song关注了科研通微信公众号
11秒前
怪味豆完成签到,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5652169
求助须知:如何正确求助?哪些是违规求助? 4786896
关于积分的说明 15058821
捐赠科研通 4810805
什么是DOI,文献DOI怎么找? 2573410
邀请新用户注册赠送积分活动 1529283
关于科研通互助平台的介绍 1488184