Non-destructive testing research on the surface damage faced by the Shanhaiguan Great Wall based on machine learning

计算机科学 摄影 人工智能 鉴定(生物学) 切片 地质学 计算机图形学(图像) 视觉艺术 植物 生物 艺术
作者
Qian Li,Liang Zheng,Yile Chen,Lina Yan,Yuan-Fang Li,Jing Zhao
出处
期刊:Frontiers in Earth Science [Frontiers Media SA]
卷期号:11 被引量:11
标识
DOI:10.3389/feart.2023.1225585
摘要

The Shanhaiguan Great Wall is a section of the Great Wall of the Ming Dynasty, which is a UNESCO World Heritage Site. Both sides of its basic structure are composed of rammed earth and gray bricks. The surface gray bricks sustain damage from environmental factors, resulting in a decline in their structural quality and even a threat to their safety. Traditional surface damage detection methods rely primarily on manual identification or manual identification following unmanned aerial vehicle (UAV) aerial photography, which is labor-intensive. This paper applies the YOLOv4 machine learning model to the gray surface bricks of the Plain Great Wall of Shanhaiguan as an illustration. By slicing and labeling the photos, creating a training set, and then training the model, the proposed approach automatically detects four types of damage (chalking, plants, ubiquinol, and cracking) on the surface of the Great Wall. This eliminates the need to expend costly human resources for manual identification following aerial photography, thereby accelerating the work. Through research, it is found that 1) compared with manual detection, this method can quickly and efficiently monitor a large number of wall samples in a short period of time and improve the efficiency of brick wall detection in ancient buildings. 2) Compared with previous approaches, the accuracy of the current method is improved. The identifiable types are increased to include chalking and ubiquinol, and the accuracy rate increases by 0.17% (from 85.70% before to 85.87% now). 3) This method can quickly identify the damaged parts of the wall without damaging the appearance of the historical building structure, enabling timely repair measures.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
左眼天堂完成签到,获得积分10
1秒前
彭于晏应助沙漏采纳,获得10
5秒前
酒吧舞男茜茜妈完成签到,获得积分10
6秒前
小豹子发布了新的文献求助30
6秒前
Gamera完成签到 ,获得积分10
6秒前
英吉利25发布了新的文献求助20
7秒前
爱学数学的数学小白完成签到,获得积分10
7秒前
竹本完成签到 ,获得积分10
10秒前
1111完成签到,获得积分10
12秒前
嘎嘎嘎发布了新的文献求助10
13秒前
椰子完成签到,获得积分10
14秒前
小G完成签到 ,获得积分10
17秒前
文艺代灵完成签到,获得积分10
18秒前
小马甲应助Innogen采纳,获得10
19秒前
20秒前
上善若水发布了新的文献求助10
21秒前
磨磨完成签到,获得积分10
25秒前
嘎嘎嘎完成签到,获得积分20
25秒前
25秒前
wdchenaic发布了新的文献求助10
31秒前
Messi发布了新的文献求助10
33秒前
liwenqiang发布了新的文献求助10
36秒前
雪海完成签到,获得积分10
37秒前
共享精神应助务实的凝天采纳,获得10
37秒前
43秒前
整齐的凝珍完成签到,获得积分10
46秒前
田様应助wonder123采纳,获得10
48秒前
飞飞完成签到,获得积分10
48秒前
51秒前
51秒前
辛勤问晴完成签到,获得积分10
52秒前
沙漏发布了新的文献求助10
54秒前
54秒前
55秒前
英俊的铭应助整齐的凝珍采纳,获得10
57秒前
微笑的丑发布了新的文献求助10
57秒前
谢大喵发布了新的文献求助10
59秒前
lysenko完成签到 ,获得积分10
1分钟前
西格玛完成签到,获得积分10
1分钟前
温婉的谷菱完成签到,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5560365
求助须知:如何正确求助?哪些是违规求助? 4645513
关于积分的说明 14675355
捐赠科研通 4586641
什么是DOI,文献DOI怎么找? 2516488
邀请新用户注册赠送积分活动 1490121
关于科研通互助平台的介绍 1460951