已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Ship trajectory prediction based on machine learning and deep learning: A systematic review and methods analysis

计算机科学 人工智能 深度学习 支持向量机 弹道 机器学习 循环神经网络 背景(考古学) 人工神经网络 随机森林 序列学习 古生物学 天文 物理 生物
作者
Huanhuan Li,Hang Jiao,Zaili Yang
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier BV]
卷期号:126: 107062-107062 被引量:74
标识
DOI:10.1016/j.engappai.2023.107062
摘要

Ship trajectory prediction based on Automatic Identification System (AIS) data has attracted increasing interest as it helps prevent collision accidents and eliminate potential navigational conflicts. Therefore, it is necessary and urgent to conduct a systematic analysis of all the prediction methods to help reveal their advantages to ensure safety at sea in different scenarios. It is particularly important and significant within the context of unmanned ships forming a new hybrid maritime traffic together with manned ships in the future. This paper aims to conduct a comparative analysis of the up-to-date ship trajectory prediction algorithms based on machine learning and deep learning methods. To do so, five classical machine learning methods (i.e., Kalman Filter, Gaussian Process Regression, Support Vector Regression, Random Forest, and Back Propagation Network) and eight deep learning methods (i.e., Recurrent Neural Networks, Long Short-Term Memory, Bi-directional Long Short-Term Memory, Gate Recurrent Unit, Bi-directional Gate Recurrent Unit, Sequence to Sequence, Spatio-Temporal Graph Convolutional Network, and Transformer) are thoroughly analysed and compared from the algorithm essence and applications to excavate their features and adaptability for manned and unmanned ships. The findings reveal the characteristics of various prediction methods and provide valuable implications for different stakeholders to guide the best-fit choice of a particular method as the solution under a specific circumstance. It also makes contributions to the extraction of the research difficulties of ship trajectory prediction and the corresponding solutions that are put forward to guide the development of future research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
顾矜应助稳重向南采纳,获得10
1秒前
4秒前
4秒前
5秒前
7秒前
勤奋的从梦完成签到,获得积分10
9秒前
pentayouth发布了新的文献求助10
9秒前
思源应助稳重向南采纳,获得10
10秒前
九日完成签到,获得积分10
11秒前
幸福的乐蕊应助Sisyphus采纳,获得10
13秒前
WW发布了新的文献求助10
13秒前
Cll完成签到 ,获得积分10
15秒前
cs完成签到,获得积分10
15秒前
文静的翠彤完成签到 ,获得积分10
16秒前
16秒前
AHMZI完成签到 ,获得积分10
17秒前
5823364完成签到,获得积分10
18秒前
19秒前
Akim应助干羞花采纳,获得10
19秒前
隐形曼青应助圆1223采纳,获得10
20秒前
杪春完成签到 ,获得积分10
20秒前
闪闪明雪关注了科研通微信公众号
22秒前
坚强藏鸟发布了新的文献求助10
22秒前
852应助稳重向南采纳,获得10
23秒前
zy发布了新的文献求助10
24秒前
ED应助hehe采纳,获得10
26秒前
zz给zz的求助进行了留言
26秒前
26秒前
27秒前
29秒前
hu970完成签到,获得积分10
29秒前
29秒前
zy完成签到,获得积分10
32秒前
DireWolf完成签到 ,获得积分10
33秒前
小蘑菇完成签到,获得积分20
33秒前
34秒前
34秒前
34秒前
34秒前
高分求助中
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2500
Future Approaches to Electrochemical Sensing of Neurotransmitters 1000
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
Finite Groups: An Introduction 800
壮语核心名词的语言地图及解释 700
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 500
Thermal Expansion of Solids (CINDAS Data Series on Material Properties, v. I-4) 470
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3906568
求助须知:如何正确求助?哪些是违规求助? 3452276
关于积分的说明 10869237
捐赠科研通 3177847
什么是DOI,文献DOI怎么找? 1755635
邀请新用户注册赠送积分活动 848934
科研通“疑难数据库(出版商)”最低求助积分说明 791330