乳腺癌
癌症研究
癌变
癌症
有丝分裂
细胞周期
细胞生长
生物
细胞周期检查点
乳腺
内科学
肿瘤科
医学
细胞生物学
遗传学
作者
Yang Hong,Xiangjin Zhen,Yihui Yang,Yizhi Zhang,Sen Zhang,Hao Yue,Guanhua Du,Hongquan Wang,Bailin Zhang,Li Wan,Jinhua Wang
标识
DOI:10.1186/s13046-023-02806-x
摘要
Breast cancer (BC) is the leading cause of morbidity and the second leading cause of death among female malignant tumors. Although available drugs have been approved for the corresponding breast cancer subtypes (ER-positive, HER2+) currently, there are still no effective targeted drugs or treatment strategies for metastatic breast cancer or triple-negative breast cancer that lack targets. Therefore, it is urgent to discover new potential targets. ERCC6L is an essential protein involved in chromosome separation during cell mitosis. However, the effect of ERCC6L on the tumorigenesis and progression of breast cancer is unclear.Here, we found that ERCC6L was highly expressed in breast cancer, especially in TNBC, which was closely related to poor outcomes of patients. An ERCC6L conditional knockout mouse model was first established in this study, and the results confirmed that ERCC6L was required for the development of the mammary gland and the tumorigenesis and progression of mammary gland cancers. In in vitro cell culture, ERCC6L acted as a tumor promoter in the malignant progression of breast cancer cells. Overexpression of ERCC6L promoted cell proliferation, migration and invasion, while knockdown of ERCC6L caused the opposite results. Mechanistically, ERCC6L accelerated the cell cycle by regulating the G2/M checkpoint signalling pathway. Additionally, we demonstrated that there is an interaction between ERCC6L and KIF4A, both of which are closely related factors in mitosis and are involved in the malignant progression of breast cancer.We first demonstrated that ERCC6L deficiency can significantly inhibit the occurrence and development of mammary gland tumors. ERCC6L was found to accelerate the cell cycle by regulating the p53/p21/CDK1/Cyclin B and PLK/CDC25C/CDK1/Cyclin B signalling pathways, thereby promoting the malignant progression of breast cancer cell lines. There was a direct interaction between KIF4A and ERCC6L, and both are closely associated with mitosis and contribute to growth and metastasis of breast tumor. To sum up, our results suggest that ERCC6L may be used as a promising target for the treatment of BC.
科研通智能强力驱动
Strongly Powered by AbleSci AI