已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Multi-class classification of brain tumour magnetic resonance images using multi-branch network with inception block and five-fold cross validation deep learning framework

计算机科学 人工智能 朴素贝叶斯分类器 卷积神经网络 分类器(UML) 深度学习 机器学习 分类 支持向量机 上下文图像分类 模式识别(心理学) 决策树 图像(数学)
作者
Deependra Rastogi,Prashant Johri,Varun Tiwari,Ahmed A. Elngar
出处
期刊:Biomedical Signal Processing and Control [Elsevier BV]
卷期号:88: 105602-105602 被引量:34
标识
DOI:10.1016/j.bspc.2023.105602
摘要

The expertise of radiologists plays a pivotal role in the intricate task of diagnosing brain tumors. However, the escalating number of patients has rendered traditional diagnostic methods increasingly formidable and expensive. Consequently, researchers have diligently delved into the realm of medical image analysis to seek more efficient and precise approaches for the detection and classification of brain malignancies. In recent times, the surge in interest surrounding Deep Learning (DL) techniques has been notable, particularly in the development of automated systems with the capability to swiftly and reliably categorize brain tumors. The essence of this study revolves around the endeavor to confront the technical challenges inherent in this domain, with a specific focus on the intricate task of classifying brain tumors through the analysis of magnetic resonance images (MRI). The crux of the proposed model for brain tumor classification rests upon the foundation of Convolutional Neural Networks (CNNs), further fortified by a multi-branch network enriched with an inception block, elegantly incorporating a five-fold cross-validation methodology. This comprehensive approach was meticulously calibrated and evaluated using the Br35H dataset, a repository encompassing 395 images devoid of tumors, 826 images depicting gliomas, 822 portraying meningiomas, and 827 capturing pituitary tumors. This research diligently concentrates on discerning among three tumor types, including scenarios where no tumors are present, and the outcomes are meticulously juxtaposed against an array of cutting-edge classification models, such as the Support Vector Classifier (SVC), Decision Tree Classifier, Logistic Regression, and Gaussian Naive Bayes. To provide a thorough assessment of the proposed model's prowess, a battery of performance metrics was subjected to intense scrutiny, spanning accuracy, loss, and variance. The meticulous analysis culminated in the revelation that the CNN with Multi-Branch Network and Inception block exhibited unparalleled excellence, achieving an awe-inspiring accuracy rate of 99.30% and a scarcely perceptible variance of 0.0005 in its classification of the four distinct tumor classes, firmly establishing its supremacy over the existing state-of-the-art models in the field.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
于清绝完成签到 ,获得积分10
4秒前
NOTHING完成签到 ,获得积分10
5秒前
林狗完成签到 ,获得积分10
8秒前
阳光的凌雪完成签到 ,获得积分10
16秒前
流星完成签到,获得积分10
19秒前
完美梨愁完成签到 ,获得积分10
19秒前
洁净的诗珊完成签到 ,获得积分10
21秒前
bless完成签到 ,获得积分10
25秒前
Bin_Liu发布了新的文献求助10
28秒前
32秒前
量子星尘发布了新的文献求助10
35秒前
35秒前
CodeCraft应助香蕉秋柳采纳,获得10
36秒前
Splaink完成签到 ,获得积分10
38秒前
41秒前
jasmine完成签到,获得积分10
41秒前
ING完成签到,获得积分10
42秒前
Iris完成签到 ,获得积分10
43秒前
炙热初柔发布了新的文献求助10
44秒前
科研通AI6应助怡然尔白采纳,获得10
44秒前
传奇3应助。。。采纳,获得10
45秒前
迅速的幻雪完成签到 ,获得积分10
49秒前
50秒前
54秒前
小炮仗完成签到 ,获得积分10
56秒前
2877321934发布了新的文献求助10
56秒前
orrrr发布了新的文献求助10
1分钟前
shuhaha完成签到,获得积分10
1分钟前
1分钟前
GT完成签到,获得积分10
1分钟前
1分钟前
开心蛋挞完成签到 ,获得积分10
1分钟前
qjw发布了新的文献求助10
1分钟前
超帅妙竹完成签到,获得积分20
1分钟前
不安愚志完成签到 ,获得积分10
1分钟前
阿龙啊完成签到 ,获得积分10
1分钟前
超帅妙竹发布了新的文献求助10
1分钟前
灰色白面鸮完成签到,获得积分10
1分钟前
orrrr完成签到,获得积分20
1分钟前
科目三应助qjw采纳,获得10
1分钟前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Organic Chemistry 1500
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Introducing Sociology Using the Stuff of Everyday Life 400
Conjugated Polymers: Synthesis & Design 400
Picture Books with Same-sex Parented Families: Unintentional Censorship 380
Metals, Minerals, and Society 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4260974
求助须知:如何正确求助?哪些是违规求助? 3794031
关于积分的说明 11898626
捐赠科研通 3441361
什么是DOI,文献DOI怎么找? 1888651
邀请新用户注册赠送积分活动 939376
科研通“疑难数据库(出版商)”最低求助积分说明 844460