Lattice pinning in MoO3 via coherent interface with stabilized Li+ intercalation

正交晶系 材料科学 格子(音乐) 插层(化学) 电解质 结构稳定性 外延 电极 异质结 凝聚态物理 晶体结构 结晶学 纳米技术 光电子学 化学 无机化学 物理化学 物理 结构工程 图层(电子) 声学 工程类
作者
Shuo Sun,Zhen Han,Wei Liu,Qiuying Xia,Liang Xue,Xincheng Lei,Teng Zhai,Dong Su,Hui Xia
出处
期刊:Nature Communications [Nature Portfolio]
卷期号:14 (1) 被引量:29
标识
DOI:10.1038/s41467-023-42335-x
摘要

Abstract Large lattice expansion/contraction with Li + intercalation/deintercalation of electrode active materials results in severe structural degradation to electrodes and can negatively impact the cycle life of solid-state lithium-based batteries. In case of the layered orthorhombic MoO 3 (α-MoO 3 ), its large lattice variation along the b axis during Li + insertion/extraction induces irreversible phase transition and structural degradation, leading to undesirable cycle life. Herein, we propose a lattice pinning strategy to construct a coherent interface between α-MoO 3 and η-Mo 4 O 11 with epitaxial intergrowth structure. Owing to the minimal lattice change of η-Mo 4 O 11 during Li + insertion/extraction, η-Mo 4 O 11 domains serve as pin centers that can effectively suppress the lattice expansion of α-MoO 3 , evidenced by the noticeably decreased lattice expansion from about 16% to 2% along the b direction. The designed α-MoO 3 /η-Mo 4 O 11 intergrown heterostructure enables robust structural stability during cycling (about 81% capacity retention after 3000 cycles at a specific current of 2 A g −1 and 298 ± 2 K) by harnessing the merits of epitaxial stabilization and the pinning effect. Finally, benefiting from the stable positive electrode–solid electrolyte interface, a highly durable and flexible all-solid-state thin-film lithium microbattery is further demonstrated. This work advances the fundamental understanding of the unstable structure evolution for α-MoO 3 , and may offer a rational strategy to develop highly stable electrode materials for advanced batteries.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大个应助科研通管家采纳,获得10
刚刚
刚刚
乐乐应助科研通管家采纳,获得10
刚刚
刚刚
科研通AI5应助科研通管家采纳,获得10
刚刚
传奇3应助科研通管家采纳,获得10
刚刚
刚刚
落寞以寒发布了新的文献求助10
2秒前
小马甲应助Jamie采纳,获得10
2秒前
小黄发布了新的文献求助10
2秒前
2秒前
3秒前
4秒前
4秒前
Ava应助ssssss采纳,获得30
5秒前
李大锤完成签到,获得积分10
6秒前
852应助cherish采纳,获得10
7秒前
8秒前
轩辕幻香发布了新的文献求助10
8秒前
椋鸟应助开放灭绝采纳,获得10
11秒前
搜集达人应助诗轩采纳,获得10
12秒前
Hello应助不是一只杨采纳,获得10
12秒前
12秒前
明理宛秋完成签到 ,获得积分10
12秒前
13秒前
迷路语兰完成签到,获得积分20
15秒前
华仔应助刘老哥6采纳,获得10
15秒前
科研通AI2S应助张雨晴采纳,获得10
16秒前
16秒前
sytbb发布了新的文献求助10
18秒前
19秒前
19秒前
19秒前
大模型应助MYBo采纳,获得10
20秒前
cherish发布了新的文献求助10
22秒前
22秒前
22秒前
Zhenhao发布了新的文献求助10
22秒前
24秒前
24秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
材料概论 周达飞 ppt 500
Nonrandom distribution of the endogenous retroviral regulatory elements HERV-K LTR on human chromosome 22 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
科学教育中的科学本质 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3806839
求助须知:如何正确求助?哪些是违规求助? 3351587
关于积分的说明 10354846
捐赠科研通 3067401
什么是DOI,文献DOI怎么找? 1684517
邀请新用户注册赠送积分活动 809780
科研通“疑难数据库(出版商)”最低求助积分说明 765635