亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Intelligent charging and discharging of electric vehicles in a vehicle-to-grid system using a reinforcement learning-based approach

备份 强化学习 电池(电) 计算机科学 电动汽车 网格 智能电网 储能 汽车工程 可再生能源 车辆到电网 模拟 工程类 电气工程 功率(物理) 人工智能 数据库 物理 量子力学 数学 几何学
作者
Joo-Sung Maeng,Daiki Min,Yuncheol Kang
出处
期刊:Sustainable Energy, Grids and Networks [Elsevier BV]
卷期号:36: 101224-101224 被引量:8
标识
DOI:10.1016/j.segan.2023.101224
摘要

Recent advances in electric vehicle (EV) technology have increased the importance of vehicle-to-grid (V2G) systems in the smart grid domain. These systems allow bidirectional energy and information flow between consumers and suppliers, enabling the EV to act as an energy storage system that can provide surplus energy to the grid. V2G is particularly useful for reducing the peak demand and load shifting for utilities, acting as a backup system for renewable energy. To optimize the benefits of these systems, the intelligent management of charging and discharging is essential, while considering the electricity prices and user requirements. However, uncertainties such as commuting behavior, charging preferences, and energy requirements, pose challenges in determining the optimal charging/discharging strategy. In this study, individual EV charging/discharging is formulated as a sequential decision-making problem and a model-free reinforcement learning (RL) approach is utilized to learn the optimal sequential charging/discharging decisions until the EV battery reaches its end-of-life. The goal is to minimize the charging cost for the individual user and maximize the use of the EV battery as the vehicle proceeds through various charging and discharging cycles, while also considering the distance traveled by the vehicle. The proposed algorithm is evaluated using real-world data, and the learned charging and discharging strategies are examined to investigate the effectiveness of the proposed method. The experimental scenarios demonstrated that utilizing the RL approach is advantageous compared to the other approaches for reducing the overall cost and maximizing the use of EV batteries.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
TongKY完成签到 ,获得积分10
6秒前
三尺缺口发布了新的文献求助10
7秒前
住在魔仙堡的鱼完成签到 ,获得积分10
18秒前
LabRat完成签到,获得积分10
18秒前
Andy_2024完成签到,获得积分10
19秒前
21秒前
三尺缺口完成签到,获得积分10
21秒前
24秒前
qingzx发布了新的文献求助10
26秒前
wzzznh完成签到 ,获得积分10
26秒前
gstaihn发布了新的文献求助10
27秒前
28秒前
1分钟前
xu完成签到,获得积分20
1分钟前
充电宝应助体贴仙人掌采纳,获得10
1分钟前
1分钟前
family发布了新的文献求助10
1分钟前
1分钟前
xu发布了新的文献求助10
1分钟前
1分钟前
非洲散打地黄完成签到 ,获得积分10
1分钟前
Carrots发布了新的文献求助10
1分钟前
会厌完成签到 ,获得积分10
1分钟前
桐桐应助张佳明采纳,获得20
1分钟前
1分钟前
大模型应助科研通管家采纳,获得10
1分钟前
Glitter完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
Zenglongying完成签到 ,获得积分10
1分钟前
1分钟前
张佳明发布了新的文献求助20
1分钟前
林珍完成签到,获得积分10
1分钟前
family完成签到,获得积分10
1分钟前
2分钟前
2分钟前
2分钟前
张佳明完成签到,获得积分10
2分钟前
林珍发布了新的文献求助10
2分钟前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3792423
求助须知:如何正确求助?哪些是违规求助? 3336688
关于积分的说明 10281893
捐赠科研通 3053438
什么是DOI,文献DOI怎么找? 1675609
邀请新用户注册赠送积分活动 803592
科研通“疑难数据库(出版商)”最低求助积分说明 761468