Intelligent charging and discharging of electric vehicles in a vehicle-to-grid system using a reinforcement learning-based approach

备份 强化学习 电池(电) 计算机科学 电动汽车 网格 智能电网 储能 汽车工程 可再生能源 车辆到电网 模拟 工程类 电气工程 功率(物理) 人工智能 物理 几何学 数学 量子力学 数据库
作者
Joo-Sung Maeng,Daiki Min,Yuncheol Kang
出处
期刊:Sustainable Energy, Grids and Networks [Elsevier BV]
卷期号:36: 101224-101224 被引量:8
标识
DOI:10.1016/j.segan.2023.101224
摘要

Recent advances in electric vehicle (EV) technology have increased the importance of vehicle-to-grid (V2G) systems in the smart grid domain. These systems allow bidirectional energy and information flow between consumers and suppliers, enabling the EV to act as an energy storage system that can provide surplus energy to the grid. V2G is particularly useful for reducing the peak demand and load shifting for utilities, acting as a backup system for renewable energy. To optimize the benefits of these systems, the intelligent management of charging and discharging is essential, while considering the electricity prices and user requirements. However, uncertainties such as commuting behavior, charging preferences, and energy requirements, pose challenges in determining the optimal charging/discharging strategy. In this study, individual EV charging/discharging is formulated as a sequential decision-making problem and a model-free reinforcement learning (RL) approach is utilized to learn the optimal sequential charging/discharging decisions until the EV battery reaches its end-of-life. The goal is to minimize the charging cost for the individual user and maximize the use of the EV battery as the vehicle proceeds through various charging and discharging cycles, while also considering the distance traveled by the vehicle. The proposed algorithm is evaluated using real-world data, and the learned charging and discharging strategies are examined to investigate the effectiveness of the proposed method. The experimental scenarios demonstrated that utilizing the RL approach is advantageous compared to the other approaches for reducing the overall cost and maximizing the use of EV batteries.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
1秒前
1秒前
研友_VZG7GZ应助BJY采纳,获得10
1秒前
2秒前
2秒前
3秒前
花海发布了新的文献求助10
4秒前
cassie完成签到,获得积分20
4秒前
zz发布了新的文献求助10
5秒前
6秒前
追光发布了新的文献求助10
7秒前
岁安发布了新的文献求助10
8秒前
9秒前
隐形的谷南完成签到,获得积分10
9秒前
浮游应助Yishai_Song采纳,获得10
10秒前
搜集达人应助温婉的樱桃采纳,获得10
11秒前
科研通AI6应助清水采纳,获得10
11秒前
完美世界应助金1采纳,获得10
12秒前
joey完成签到,获得积分20
12秒前
华仔应助keyboy采纳,获得10
12秒前
汤锐完成签到,获得积分10
12秒前
12秒前
ksds完成签到,获得积分10
14秒前
14秒前
huangt发布了新的文献求助20
14秒前
joey发布了新的文献求助10
16秒前
梦梦完成签到 ,获得积分10
16秒前
所所应助阿啵呲嘚采纳,获得10
16秒前
17秒前
大模型应助struggling2026采纳,获得10
18秒前
18秒前
helen完成签到,获得积分10
18秒前
烟花应助风趣水风采纳,获得10
19秒前
19秒前
19秒前
20秒前
GPTea应助叶子采纳,获得30
20秒前
Owen应助shengch0234采纳,获得10
22秒前
xuexixiaojin发布了新的文献求助10
23秒前
英俊绿蓉发布了新的文献求助10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Nuclear Fuel Behaviour under RIA Conditions 500
Sociologies et cosmopolitisme méthodologique 400
Why America Can't Retrench (And How it Might) 400
Another look at Archaeopteryx as the oldest bird 390
Optimization and Learning via Stochastic Gradient Search 300
Higher taxa of Basidiomycetes 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4679574
求助须知:如何正确求助?哪些是违规求助? 4056044
关于积分的说明 12541780
捐赠科研通 3750490
什么是DOI,文献DOI怎么找? 2071462
邀请新用户注册赠送积分活动 1100516
科研通“疑难数据库(出版商)”最低求助积分说明 980022