Color Fusion Effect on Deep Learning Classification of Uveal Melanoma

融合 黑色素瘤 人工智能 计算机科学 深度学习 模式识别(心理学) 医学 癌症研究 语言学 哲学
作者
Xincheng Yao,ALBERT DADZIE,Sabrina Iddir,Mansour Abtahi,Behrouz Ebrahimi,David Le,Sanjay Ganesh,Taeyoon Son,Michael J. Heiferman
标识
DOI:10.21203/rs.3.rs-3399214/v1
摘要

Abstract Background: Reliable differentiation of uveal melanoma and choroidal nevi is crucial to guide appropriate treatment, preventing unnecessary procedures for benign lesions and ensuring timely treatment for potentially malignant cases. The purpose of this study is to validate deep learning classification of uveal melanoma and choroidal nevi, and to evaluate the effect of color fusion options on the classification performance. Methods: A total of 798 ultra-widefield retinal images of 438 patients were included in this retrospective study, comprising 157 patients diagnosed with UM and 281 patients diagnosed with choroidal nevus. Color fusion options, including early fusion, intermediate fusion and late fusion, were tested for deep learning image classification with a convolutional neural network (CNN). Specificity, sensitivity, F1-score, accuracy, and the area under the curve (AUC) of a receiver operating characteristic (ROC) were used to evaluate the classification performance. The saliency map visualization technique was used to understand the areas in the image that had the most influence on classification decisions of the CNN. Results: Color fusion options were observed to affect the deep learning performance significantly. For single-color learning, the red color image was observed to have superior performance compared to green and blue channels. For multi-color learning, the intermediate fusion is better than early and late fusion options. Conclusion: Deep learning is a promising approach for automated classification of uveal melanoma and choroidal nevi, and color fusion options can significantly affect the classification performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lucas应助小熊riki采纳,获得10
1秒前
完美世界应助怎么说采纳,获得10
1秒前
星辰大海应助Dellamoffy采纳,获得10
2秒前
ChaiHaobo发布了新的文献求助10
2秒前
Zhjie126完成签到,获得积分10
2秒前
nmko发布了新的文献求助10
2秒前
细心书包应助芝士啵啵球采纳,获得10
2秒前
无花果应助勤奋灭龙采纳,获得10
2秒前
Sept完成签到,获得积分10
4秒前
5秒前
耀学菜菜完成签到,获得积分10
6秒前
6秒前
背后的白安完成签到,获得积分10
6秒前
7秒前
7秒前
7秒前
7秒前
TH完成签到 ,获得积分10
8秒前
404发布了新的文献求助10
8秒前
Ava应助狂奔的蜗牛采纳,获得30
8秒前
科目三应助wdw2501采纳,获得10
8秒前
8秒前
9秒前
9秒前
asder发布了新的文献求助10
10秒前
10秒前
Dream完成签到,获得积分10
10秒前
wanci应助ChaiHaobo采纳,获得10
11秒前
12秒前
12秒前
12秒前
整齐的航空发布了新的文献求助200
12秒前
小骨完成签到,获得积分10
12秒前
mi发布了新的文献求助10
12秒前
Akim应助董晏殊采纳,获得10
13秒前
4u发布了新的文献求助10
13秒前
快乐风松发布了新的文献求助30
13秒前
稳重盼夏完成签到,获得积分20
13秒前
13秒前
13秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Teaching Language in Context (Third Edition) 1000
List of 1,091 Public Pension Profiles by Region 961
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5446392
求助须知:如何正确求助?哪些是违规求助? 4555440
关于积分的说明 14251682
捐赠科研通 4477908
什么是DOI,文献DOI怎么找? 2453417
邀请新用户注册赠送积分活动 1444174
关于科研通互助平台的介绍 1420200