Precise Prediction of Biochar Yield and Proximate Analysis by Modern Machine Learning and SHapley Additive exPlanations

生物炭 产量(工程) 计算机科学 机器学习 化学 人工智能 数学 材料科学 冶金 有机化学 热解
作者
Lê Anh Tuấn,Ashok Pandey,Ranjan Sirohi,Prabhakar Sharma,Wei‐Hsin Chen,Nguyen Dang Khoa Pham,Việt Dũng Trần,Xuân Phương Nguyễn,Anh Tuan Hoang
出处
期刊:Energy & Fuels [American Chemical Society]
卷期号:37 (22): 17310-17327 被引量:41
标识
DOI:10.1021/acs.energyfuels.3c02868
摘要

Biochar is found to possess a large number of applications in energy and environmental areas. However, biochar could be produced from a variety of sources, showing that biochar yield and proximate analysis outcomes could change over a wide range. Thus, developing a high-accuracy machine learning-based tool is very necessary to predict biochar characteristics. In this study, a hybrid technique was developed by blending modern machine learning (ML) algorithms with cooperative game theory-based Shapley Additive exPlanations (SHAP). SHAP analysis was employed to help improve interpretability while offering insights into the decision-making process. In the ML models, linear regression was employed as the baseline regression method, and more advanced methodologies like AdaBoost and boosted regression tree (BRT) were employed. The developed prediction models were evaluated on a battery of statistical metrics, and all ML models were observed as robust enough. Among all three models, the BRT-based model delivered the best prediction performance with R2 in the range of 0.982 to 0.999 during the model training phase and 0.968 to 0.988 during the model test. The value of the mean squared error was also quite low (0.89 to 9.168) for BRT-based models. SHAP analysis quantified the value of each input element to the expected results and provided a more in-depth understanding of the underlying dynamics. The SHAP analysis helped to reveal that temperature was the main factor affecting the response predictions. The hybrid technique proposed here provides substantial insights into the biochar manufacturing process, allowing for improved control of biochar properties and increasing the use of this sustainable and flexible material in numerous applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
JamesPei应助doctorduanmu采纳,获得10
1秒前
淡淡朝阳完成签到,获得积分10
1秒前
謓言完成签到 ,获得积分10
2秒前
2秒前
2秒前
孝顺的觅风完成签到 ,获得积分10
3秒前
3秒前
4秒前
研友_LNMmW8发布了新的文献求助10
5秒前
CipherSage应助科研通管家采纳,获得10
6秒前
科研通AI2S应助科研通管家采纳,获得10
6秒前
喜悦的小土豆完成签到 ,获得积分10
6秒前
Ava应助科研通管家采纳,获得10
6秒前
深情安青应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
科研通AI5应助科研通管家采纳,获得30
6秒前
核桃应助科研通管家采纳,获得10
7秒前
搜集达人应助科研通管家采纳,获得10
7秒前
隐形曼青应助科研通管家采纳,获得10
7秒前
浮游应助科研通管家采纳,获得10
7秒前
Smile应助科研通管家采纳,获得20
7秒前
浮游应助科研通管家采纳,获得10
7秒前
我是老大应助科研通管家采纳,获得10
7秒前
领导范儿应助科研通管家采纳,获得10
7秒前
科研通AI5应助科研通管家采纳,获得30
7秒前
脑洞疼应助科研通管家采纳,获得10
8秒前
慕青应助科研通管家采纳,获得10
8秒前
汉堡包应助科研通管家采纳,获得10
8秒前
浮游应助科研通管家采纳,获得10
8秒前
完美世界应助科研通管家采纳,获得10
8秒前
8秒前
研友_LpQgPn发布了新的文献求助10
9秒前
吴彦祖完成签到,获得积分20
10秒前
传奇3应助Leeeeee_采纳,获得10
10秒前
Jason完成签到 ,获得积分20
11秒前
二般人发布了新的文献求助10
11秒前
典雅的幼菱完成签到 ,获得积分20
12秒前
13秒前
怕黑三毒发布了新的文献求助10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Разработка технологических основ обеспечения качества сборки высокоточных узлов газотурбинных двигателей,2000 1000
Vertebrate Palaeontology, 5th Edition 500
ISO/IEC 24760-1:2025 Information security, cybersecurity and privacy protection — A framework for identity management 500
Optimization and Learning via Stochastic Gradient Search 500
Nuclear Fuel Behaviour under RIA Conditions 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4702028
求助须知:如何正确求助?哪些是违规求助? 4070135
关于积分的说明 12584752
捐赠科研通 3770227
什么是DOI,文献DOI怎么找? 2082285
邀请新用户注册赠送积分活动 1109736
科研通“疑难数据库(出版商)”最低求助积分说明 987908