Lightweight FL: A Low-Cost Federated Learning Framework for Mechanical Fault Diagnosis With Training Optimization and Model Pruning

计算机科学 修剪 水准点(测量) 边缘设备 人工智能 计算 GSM演进的增强数据速率 机器学习 深度学习 架空(工程) 云计算 算法 农学 生物 大地测量学 地理 操作系统
作者
Jiahao Du,Na Qin,Deqing Huang,Xinming Jia,Yiming Zhang
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:73: 1-14 被引量:2
标识
DOI:10.1109/tim.2023.3328073
摘要

Due to data security concerns, federated learning (FL) has significant computation and communication costs, which lowers total training effectiveness. This research proposes a new federated learning framework, Lightweight FL, to resolve this problem by enhancing the current fundamental processes. First, a local network comprising numerous lightweight training methodologies is designed to lower the costs of local model training via small-scale convolution calculation. Second, non-structural pruning and fine-tuning of the local model is performed on this premise to reduce computation costs by reducing network complexity. Third, the optimal selection strategy is proposed during model pruning and model aggregation processes, and the model with the best performance is chosen as the benchmark model for the next iteration of learning. This strategy is equipped to reduce communication costs and improve learning efficiency of the framework. It is proved through verification of the bearing, gearbox, and bogie datasets that it can effectively decrease learning costs while still assuring good model performance. This offers a workable option for federated learning deployments in the future on low-performance edge devices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爱笑的曼寒完成签到,获得积分10
刚刚
zzzllll完成签到,获得积分10
1秒前
胡姐姐完成签到,获得积分10
2秒前
欣慰的觅儿完成签到,获得积分10
3秒前
6秒前
隐形曼青应助yqt采纳,获得10
6秒前
NexusExplorer应助开放朋友采纳,获得10
6秒前
7秒前
BINGBING1230发布了新的文献求助10
7秒前
JamesPei应助伶俐的金连采纳,获得10
7秒前
9秒前
10秒前
潇潇雨歇完成签到,获得积分10
14秒前
14秒前
科研通AI6应助wcwpl采纳,获得10
14秒前
15秒前
LaTeXer应助BINGBING1230采纳,获得10
17秒前
Akim应助BINGBING1230采纳,获得10
17秒前
18秒前
细腻的枫叶应助沉静安荷采纳,获得10
18秒前
bkagyin应助cyan采纳,获得10
19秒前
小美完成签到 ,获得积分10
20秒前
22秒前
FW发布了新的文献求助10
23秒前
moriaty应助潇潇雨歇采纳,获得10
24秒前
BINGBING1230完成签到,获得积分10
24秒前
highhigh应助塔塔采纳,获得30
27秒前
29秒前
ddd666完成签到 ,获得积分10
30秒前
Vito完成签到,获得积分10
31秒前
31秒前
aqiuyuehe发布了新的文献求助20
36秒前
脑洞疼应助姚学宇采纳,获得10
36秒前
独特的如雪完成签到,获得积分10
37秒前
开放朋友发布了新的文献求助10
39秒前
42秒前
前进的小宅熊完成签到,获得积分10
43秒前
wanci应助yuilcl采纳,获得10
44秒前
科研通AI5应助王子采纳,获得10
44秒前
naiyouqiu1989完成签到,获得积分10
46秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Rapid Review of Electrodiagnostic and Neuromuscular Medicine: A Must-Have Reference for Neurologists and Physiatrists 800
求中国石油大学(北京)图书馆的硕士论文,作者董晨,十年前搞太赫兹的 500
Vertebrate Palaeontology, 5th Edition 500
Narrative Method and Narrative form in Masaccio's Tribute Money 500
Aircraft Engine Design, Third Edition 500
Neonatal and Pediatric ECMO Simulation Scenarios 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4768365
求助须知:如何正确求助?哪些是违规求助? 4105022
关于积分的说明 12698397
捐赠科研通 3823060
什么是DOI,文献DOI怎么找? 2109914
邀请新用户注册赠送积分活动 1134361
关于科研通互助平台的介绍 1015535