亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Toward Early and Accurate Network Intrusion Detection Using Graph Embedding

计算机科学 入侵检测系统 网络数据包 图形 网络安全 数据挖掘 人工智能 图嵌入 嵌入 机器学习 理论计算机科学 计算机网络
作者
Xiaoyan Hu,Wenjie Gao,Guang Cheng,Ruidong Li,Yuyang Zhou,Hua Wu
出处
期刊:IEEE Transactions on Information Forensics and Security [Institute of Electrical and Electronics Engineers]
卷期号:18: 5817-5831 被引量:20
标识
DOI:10.1109/tifs.2023.3318960
摘要

Early and accurate detection of network intrusions is crucial to ensure network security and stability. Existing network intrusion detection methods mainly use conventional machine learning or deep learning technology to classify intrusions based on the statistical features of network flows. The feature extraction relies on expert experience and cannot be performed until the end of network flows, which delays intrusion detection. The existing graph-based intrusion detection methods require global network traffic to construct communication graphs, which is complex and time-consuming. Besides, the existing deep learning-based and graph-based intrusion detection methods resort to massive training samples. This paper proposes Graph2vec+RF, an early and accurate network intrusion detection method based on graph embedding technology. We construct a flow graph from the initial several interactive packets for each bidirectional network flow instead, adopt graph embedding technology, graph2vec, to learn the vector representation of the flow graph and classify the graph vectors with Random Forest (RF). Graph2vec+RF automatically extracts flow graph features using subgraph structures and relies on only a small number of the initial interactive packets per bidirectional network flow without requiring massive training samples to achieve early and accurate network intrusion detection. Our experimental results on the CICIDS2017 and CICIDS2018 datasets show that our proposed Graph2vec+RF outperforms the state-of-the-art methods in terms of accuracy, recall, precision, and F1-score.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hwen1998完成签到 ,获得积分10
9秒前
51秒前
赘婿应助科研通管家采纳,获得10
1分钟前
烟消云散完成签到,获得积分10
1分钟前
高大代容完成签到,获得积分10
1分钟前
2分钟前
Denmark完成签到 ,获得积分10
2分钟前
善学以致用应助李某采纳,获得10
3分钟前
wangfaqing942完成签到 ,获得积分10
3分钟前
ding应助satsuki采纳,获得10
3分钟前
丢硬币的小孩完成签到,获得积分10
3分钟前
唐泽雪穗应助科研通管家采纳,获得10
3分钟前
唐泽雪穗应助科研通管家采纳,获得10
3分钟前
ceeray23应助科研通管家采纳,获得30
3分钟前
ceeray23应助科研通管家采纳,获得30
3分钟前
4分钟前
HRXYZ发布了新的文献求助10
4分钟前
HRXYZ完成签到,获得积分10
4分钟前
4分钟前
量子星尘发布了新的文献求助10
4分钟前
浮游应助andrele采纳,获得10
4分钟前
李某完成签到,获得积分20
5分钟前
5分钟前
李某发布了新的文献求助10
5分钟前
5分钟前
唐泽雪穗应助科研通管家采纳,获得10
5分钟前
唐泽雪穗应助科研通管家采纳,获得10
5分钟前
唐泽雪穗应助科研通管家采纳,获得10
5分钟前
5分钟前
5分钟前
xql发布了新的文献求助10
6分钟前
6分钟前
xql完成签到,获得积分10
6分钟前
草木完成签到 ,获得积分10
7分钟前
负责的皮卡丘应助爱静静采纳,获得10
7分钟前
唐泽雪穗应助科研通管家采纳,获得10
7分钟前
唐泽雪穗应助科研通管家采纳,获得10
7分钟前
7分钟前
例外完成签到 ,获得积分20
7分钟前
隐形曼青应助Eastonlyzhang采纳,获得10
8分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
Optimisation de cristallisation en solution de deux composés organiques en vue de leur purification 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5078142
求助须知:如何正确求助?哪些是违规求助? 4296979
关于积分的说明 13387646
捐赠科研通 4119545
什么是DOI,文献DOI怎么找? 2256081
邀请新用户注册赠送积分活动 1260413
关于科研通互助平台的介绍 1193873