MG-Trans: Multi-Scale Graph Transformer With Information Bottleneck for Whole Slide Image Classification

计算机科学 判别式 瓶颈 人工智能 模式识别(心理学) 数据挖掘 计算机视觉 嵌入式系统
作者
Jiangbo Shi,Lufei Tang,Zeyu Gao,Yang Li,Chunbao Wang,Tieliang Gong,Chen Li,Huazhu Fu
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:42 (12): 3871-3883 被引量:5
标识
DOI:10.1109/tmi.2023.3313252
摘要

Multiple instance learning (MIL)-based methods have become the mainstream for processing the megapixel-sized whole slide image (WSI) with pyramid structure in the field of digital pathology. The current MIL-based methods usually crop a large number of patches from WSI at the highest magnification, resulting in a lot of redundancy in the input and feature space. Moreover, the spatial relations between patches can not be sufficiently modeled, which may weaken the model's discriminative ability on fine-grained features. To solve the above limitations, we propose a Multi-scale Graph Transformer (MG-Trans) with information bottleneck for whole slide image classification. MG-Trans is composed of three modules: patch anchoring module (PAM), dynamic structure information learning module (SILM), and multi-scale information bottleneck module (MIBM). Specifically, PAM utilizes the class attention map generated from the multi-head self-attention of vision Transformer to identify and sample the informative patches. SILM explicitly introduces the local tissue structure information into the Transformer block to sufficiently model the spatial relations between patches. MIBM effectively fuses the multi-scale patch features by utilizing the principle of information bottleneck to generate a robust and compact bag-level representation. Besides, we also propose a semantic consistency loss to stabilize the training of the whole model. Extensive studies on three subtyping datasets and seven gene mutation detection datasets demonstrate the superiority of MG-Trans.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
我是神呆呆完成签到,获得积分20
1秒前
积极从蕾应助kean1943采纳,获得10
1秒前
Joshua应助陈小白采纳,获得10
3秒前
3秒前
4秒前
4秒前
wanci应助柠檬采纳,获得10
5秒前
敖江风云发布了新的文献求助10
5秒前
6秒前
6秒前
6秒前
duxh123发布了新的文献求助10
6秒前
沉静的颦发布了新的文献求助10
8秒前
9秒前
1111发布了新的文献求助10
10秒前
11秒前
渣渣发布了新的文献求助10
12秒前
xiao完成签到 ,获得积分10
12秒前
过时的画板完成签到,获得积分10
12秒前
舒适怀寒完成签到 ,获得积分10
14秒前
香蕉觅云应助隐形的乐枫采纳,获得10
14秒前
14秒前
YJL完成签到 ,获得积分10
15秒前
无为完成签到 ,获得积分10
15秒前
小马甲应助Minjalee采纳,获得10
15秒前
敖江风云发布了新的文献求助10
16秒前
18秒前
阿婆家的傻小子完成签到,获得积分10
18秒前
18秒前
18秒前
虚幻白桃完成签到,获得积分10
19秒前
露露发布了新的文献求助20
19秒前
香辣脆皮坤完成签到,获得积分10
20秒前
21秒前
桐桐应助kkkkr采纳,获得10
22秒前
22秒前
22秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Semantics for Latin: An Introduction 1099
Robot-supported joining of reinforcement textiles with one-sided sewing heads 780
水稻光合CO2浓缩机制的创建及其作用研究 500
Logical form: From GB to Minimalism 500
2025-2030年中国消毒剂行业市场分析及发展前景预测报告 500
Grammar in Action:Building comprehensive grammars of talk-in-interaction 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4164786
求助须知:如何正确求助?哪些是违规求助? 3700099
关于积分的说明 11682524
捐赠科研通 3389471
什么是DOI,文献DOI怎么找? 1858851
邀请新用户注册赠送积分活动 919280
科研通“疑难数据库(出版商)”最低求助积分说明 831988