Skeleton-guided generation of synthetic noisy point clouds from as-built BIM to improve indoor scene understanding

点云 合成数据 计算机科学 人工智能 深度学习 分割 点(几何) 人工神经网络 等距 数据挖掘 机器学习 模式识别(心理学) 工程类 数学 机械工程 几何学
作者
Shengjun Tang,Hongsheng Huang,Yunjie Zhang,Mengmeng Yao,Xiaoming Li,Linfu Xie,Weixi Wang
出处
期刊:Automation in Construction [Elsevier BV]
卷期号:156: 105076-105076
标识
DOI:10.1016/j.autcon.2023.105076
摘要

The limited amount of high-quality training data available in indoor understanding with deep learning is a major problem. A possible solution to this problem is to use synthetic data to improve network training. In this study, a fully automatic method to generate synthetic noisy point clouds from as-built building information modeling (BIM) models is presented and it assesses the potential of these synthetic point clouds to improve deep neural network training. Based on a skeleton-guided strategy, all hypothetical scanning sites are located along the central axis of the buildings, which are obtained through equidistant sampling. Then, the synthetic labeled point cloud is generated station-by-station, and data augmentation is achieved using a random combination of data from different stations. The proposed approach involves generating over 44 sets of synthetic noisy point clouds based on BIM models. The performance of state-of-the-art (SOTA) deep learning methods in understanding indoor scenes enhanced by the synthetic point clouds is thoroughly assessed, and the effectiveness of various combinations of real and synthetic datasets is investigated. The experimental results demonstrate that leveraging synthetic point clouds generated from BIM models leads to a remarkable 5%–10% improvement in 3D semantic segmentation accuracy. The research signifies the value of synthetic point clouds as an effective tool for improving deep neural network training. All simulation datasets are publicly available, including original BIM models, full synthetic point clouds, and point clouds after IHPR processing, accessible via the BIMSyn Dataset link. In future research, an exploration of how synthetic point clouds will be further improved by considering specific characteristics of objects such as color, material reflectance, and illumination.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
cdercder应助cyy采纳,获得10
5秒前
5秒前
flash完成签到,获得积分10
5秒前
小蘑菇应助欧阳采纳,获得10
7秒前
TE发布了新的文献求助10
8秒前
斯文远望完成签到,获得积分10
9秒前
清秀豪英发布了新的文献求助10
9秒前
10秒前
梦追阳完成签到 ,获得积分10
10秒前
喜欢玩辅助完成签到,获得积分10
13秒前
桃博完成签到,获得积分10
13秒前
tourist585完成签到,获得积分10
13秒前
党弛完成签到,获得积分10
14秒前
梦追阳关注了科研通微信公众号
14秒前
我说苏卡你说不列完成签到,获得积分10
14秒前
大橘完成签到 ,获得积分10
14秒前
mm完成签到,获得积分10
15秒前
顺心的雨真完成签到,获得积分10
15秒前
科研通AI5应助虚幻的玉米采纳,获得10
16秒前
神明发布了新的文献求助30
17秒前
大模型应助cyy采纳,获得10
18秒前
19秒前
19秒前
yc完成签到 ,获得积分10
20秒前
21秒前
研友_LwlAgn发布了新的文献求助10
24秒前
Ava应助阿云采纳,获得10
26秒前
guan发布了新的文献求助10
27秒前
29秒前
amupf完成签到 ,获得积分10
29秒前
29秒前
30秒前
力劈华山完成签到,获得积分10
31秒前
搞怪雁风发布了新的文献求助10
32秒前
33秒前
33秒前
残月初升完成签到,获得积分10
34秒前
唯梦发布了新的文献求助10
34秒前
李爱国应助CardiB采纳,获得10
36秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3783306
求助须知:如何正确求助?哪些是违规求助? 3328584
关于积分的说明 10237387
捐赠科研通 3043770
什么是DOI,文献DOI怎么找? 1670643
邀请新用户注册赠送积分活动 799811
科研通“疑难数据库(出版商)”最低求助积分说明 759130