Optimization of extracted building footprints from UAV images

点云 计算机科学 正射影像 建筑模型 卷积神经网络 地籍 分割 人工智能 数字高程模型 遥感 计算机视觉 数据挖掘 地理 地图学 模拟
作者
Miloš Tutnjevic,Miro Govedarica,Gordana Jakovljević
标识
DOI:10.1117/12.2681315
摘要

Building footprints is important information in many types of applications, including optimization of rescuer response in case of catastrophic events, urban planning, urban dynamic monitoring, 3D building modeling etc. Traditionally, in remote sensing, building footprints are detected from very high-resolution images or point clouds. Convolution Neural Network (CNN) based semantic image segmentation model has become a common way to extract buildings footprints from remote sensing data with high accuracy regardless of differences in landscapes, shapes, texture, and used materials. However, the results of extraction usually represent rooftop outlines with overhangs rather than true building footprints. This paper presents the methodology for the optimization of building footprints by using contour information, which is derived from the UAV point cloud. First, the CNN model was used to extract rooftops from high-resolution UAV-based orthophoto. After that, the cross-section of the mesh model was performed in order to detect the outline of the building. The optimum height of the mesh cross section was derived based on an analysis of the Digital Elevation Model and Digital Surface Model. The generated results were compared with Open Street Map (OSM) and reference cadastral datasets. Quantitative and qualitative evaluations show that the proposed methodology can significantly improve the accuracy of CNN-extracted building footprints (and OSM data) compared to cadastral data. In addition, the high of buildings is simultaneously derived. Therefore, our approach opens up the possibility to use the full potential of UAV products for generating accurate building footprints and 3D building models of LoD1 with compatible accuracy as cadastral.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
好了完成签到,获得积分10
1秒前
打打应助jasondy采纳,获得10
5秒前
suiting完成签到,获得积分10
8秒前
情怀应助积极紫翠采纳,获得10
8秒前
沉默的若云完成签到,获得积分10
8秒前
8秒前
花生完成签到 ,获得积分10
10秒前
凄惨惨戚完成签到,获得积分20
11秒前
12秒前
Apple完成签到,获得积分10
12秒前
凄惨惨戚发布了新的文献求助30
15秒前
我是老大应助every采纳,获得10
15秒前
科目三应助11采纳,获得10
17秒前
Timon完成签到,获得积分10
17秒前
动漫大师发布了新的文献求助30
19秒前
19秒前
活力寄凡完成签到,获得积分10
21秒前
22秒前
啥也不会完成签到 ,获得积分10
22秒前
顾矜应助火星上听寒采纳,获得10
22秒前
23秒前
L1nJ1nG完成签到,获得积分10
23秒前
爆米花应助能干发夹采纳,获得10
23秒前
25秒前
26秒前
26秒前
every发布了新的文献求助10
27秒前
27秒前
科研通AI5应助酷炫的背包采纳,获得10
28秒前
jasondy发布了新的文献求助10
28秒前
29秒前
bkagyin应助阔达岂愈采纳,获得10
30秒前
乐乐应助小爪子采纳,获得10
31秒前
31秒前
杰哥发布了新的文献求助10
31秒前
32秒前
33秒前
幸运儿橙德加完成签到,获得积分20
33秒前
LHP发布了新的文献求助10
34秒前
34秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3803788
求助须知:如何正确求助?哪些是违规求助? 3348592
关于积分的说明 10339483
捐赠科研通 3064770
什么是DOI,文献DOI怎么找? 1682762
邀请新用户注册赠送积分活动 808409
科研通“疑难数据库(出版商)”最低求助积分说明 764096