Advancing Plastic Waste Classification and Recycling Efficiency: Integrating Image Sensors and Deep Learning Algorithms

塑料污染 分类 计算机科学 塑料废料 环境科学 环境污染 人工智能 工艺工程 生化工程 微塑料 废物管理 工程类 算法 化学 环境化学 环境保护
作者
Jang-Hee Choi,B. D. Lim,Youngjun Yoo
出处
期刊:Applied sciences [MDPI AG]
卷期号:13 (18): 10224-10224 被引量:39
标识
DOI:10.3390/app131810224
摘要

Plastics, with their versatility and cost-effectiveness, have become indispensable materials across various industries. However, the improper disposal and mismanagement of plastic waste have led to significant environmental issues, including pollution, habitat destruction, and threats to wildlife. To address these challenges, numerous methods for plastic waste sorting and recycling have been developed. While conventional techniques like near-infrared spectroscopy (NIRS) have been effective to some extent, they face difficulties in accurately classifying chemically similar samples, such as polyethylene terephthalate (PET) and PET-glycol (PET-G), which have similar chemical compositions but distinct physical characteristics. This paper introduces an approach that adapts image sensors and deep learning object detection algorithms; specifically, the You Only Look Once (YOLO) model, to enhance plastic waste classification based on the shape of the waste. Unlike conventional methods that rely solely on spectral analysis, our methodology aims to significantly improve the accuracy and efficiency of classifying plastics, especially when dealing with materials having similar chemical compositions but differing physical attributes. The system developed using image sensors and the YOLO model proves to be not only effective but also scalable and adaptable for various industrial and environmental applications. In our experiments, the results are strikingly effective. We achieved a classification accuracy rate exceeding 91.7% mean Average Precision (mAP) in distinguishing between PET and PET-G, surpassing conventional techniques by a considerable margin. The implications of this research extend far and wide. By enhancing the accuracy of plastic waste sorting and reducing misclassification rates, we can significantly boost recycling efficiency. The proposed approach contributes to a more sustainable and efficient plastic waste management system, alleviating the strain on landfills and mitigating the environmental impact of plastic waste, contributing to a cleaner and more sustainable environment.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
宋煜欧完成签到,获得积分10
3秒前
淡定的水彤完成签到,获得积分10
3秒前
传奇3应助123456采纳,获得10
5秒前
852应助王博涵采纳,获得10
8秒前
zllllll完成签到 ,获得积分10
9秒前
852应助夏天采纳,获得10
9秒前
SD完成签到,获得积分10
10秒前
2620完成签到,获得积分10
10秒前
研友_VZG7GZ应助lin采纳,获得10
10秒前
10秒前
老八完成签到,获得积分10
11秒前
12秒前
13秒前
zkyyinf_zero完成签到,获得积分10
13秒前
完美世界应助小李采纳,获得10
14秒前
waver发布了新的文献求助10
14秒前
15秒前
那迪娅完成签到,获得积分20
16秒前
17秒前
17秒前
18秒前
18秒前
王博涵发布了新的文献求助10
19秒前
20秒前
六一完成签到,获得积分20
20秒前
kris完成签到,获得积分10
20秒前
20秒前
20秒前
木子李发布了新的文献求助10
20秒前
量子星尘发布了新的文献求助10
21秒前
彭于晏应助忧郁难胜采纳,获得10
21秒前
小小白发布了新的文献求助10
22秒前
俊逸战斗机完成签到,获得积分10
23秒前
frozensun发布了新的文献求助10
23秒前
浮游应助无语的灵枫采纳,获得10
23秒前
情怀应助平常的建辉采纳,获得10
23秒前
晚风发布了新的文献求助10
24秒前
24秒前
24秒前
wangying完成签到,获得积分10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Theoretical modelling of unbonded flexible pipe cross-sections 2000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Minimizing the Effects of Phase Quantization Errors in an Electronically Scanned Array 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5533159
求助须知:如何正确求助?哪些是违规求助? 4621584
关于积分的说明 14579174
捐赠科研通 4561639
什么是DOI,文献DOI怎么找? 2499444
邀请新用户注册赠送积分活动 1479295
关于科研通互助平台的介绍 1450504