Magnetically induced stiffening for soft robotics

磁流变液 变硬 软机器人 机器人学 刚度 人工智能 干扰 材料科学 执行机构 磁铁 软件可移植性 机械工程 计算机科学 机器人 工程类 结构工程 复合材料 物理 阻尼器 热力学 程序设计语言
作者
Leah Teresa Gaeta,Kevin McDonald,Lorenzo Kinnicutt,Megan Le,Sidney Wilkinson-Flicker,Yixiao Jiang,Taylan Atakuru,Evren Samur,Tommaso Ranzani
出处
期刊:Soft Matter [The Royal Society of Chemistry]
卷期号:19 (14): 2623-2636 被引量:2
标识
DOI:10.1039/d2sm01390h
摘要

Soft robots are well-suited for human-centric applications, but the compliance that gives soft robots this advantage must also be paired with adequate stiffness modulation such that soft robots can achieve more rigidity when needed. For this reason, variable stiffening mechanisms are often a necessary component of soft robot design. Many techniques have been explored to introduce variable stiffness structures into soft robots, such as pneumatically-controlled jamming and thermally-controlled phase change materials. Despite fast response time, jamming methods often require a bulkier pneumatic pressure line which limits portability; and while portable via electronic control, thermally-induced methods require compatibility with high temperatures and often suffer from slow response time. In this paper, we present a magnetically-controlled stiffening approach that combines jamming-based stiffening principles with magnetorheological fluid to create a hybrid mechanical and materials approach. In doing so, we combine the advantages of fast response time from pneumatically-based jamming with the portability of thermally-induced phase change methods. We explore the influence of magnetic field strength on the stiffening of our magnetorheological jamming beam samples in two ways: by exploiting the increase in yield stress of magnetorheological fluid, and by additionally using the clamping force between permanent magnets to further stiffen the samples via a clutch effect. We introduce an analytical model to predict the stiffness of our samples as a function of the magnetic field. Finally, we demonstrate electronic control of the stiffness using electropermanent magnets. In this way, we present an important step towards a new electronically-driven stiffening mechanism for soft robots that interact safely in close contact with humans, such as in wearable devices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Mike001发布了新的文献求助10
2秒前
深情安青应助Ridley采纳,获得10
3秒前
3秒前
小飞侠发布了新的文献求助10
4秒前
4秒前
6秒前
无花果应助小玲仔采纳,获得10
8秒前
lalala应助调皮的豌豆采纳,获得10
8秒前
8秒前
9秒前
10秒前
情怀应助笨笨筮采纳,获得10
10秒前
汉堡包应助小白采纳,获得10
13秒前
13秒前
14秒前
传奇3应助学啊学啊发发采纳,获得10
14秒前
嗯好22222完成签到 ,获得积分10
14秒前
罗_应助调皮时光采纳,获得10
16秒前
huangyuchen0910完成签到,获得积分20
17秒前
Hello应助呵呵采纳,获得10
18秒前
18秒前
19秒前
平常映雁发布了新的文献求助10
19秒前
goofs完成签到,获得积分10
20秒前
21秒前
sirius完成签到,获得积分10
21秒前
21秒前
wanci应助斯尼奇采纳,获得10
21秒前
欢呼的凌兰完成签到,获得积分10
21秒前
wwwhui发布了新的文献求助10
22秒前
Bingtao_Lian完成签到 ,获得积分10
24秒前
lvlv发布了新的文献求助10
25秒前
26秒前
罗大师完成签到,获得积分10
26秒前
26秒前
28秒前
wwwhui完成签到,获得积分10
28秒前
罗大师发布了新的文献求助10
29秒前
29秒前
俊秀的元灵应助木尧采纳,获得20
31秒前
高分求助中
The three stars each : the Astrolabes and related texts 1070
Manual of Clinical Microbiology, 4 Volume Set (ASM Books) 13th Edition 1000
Sport in der Antike 800
Aspect and Predication: The Semantics of Argument Structure 666
De arte gymnastica. The art of gymnastics 600
少脉山油柑叶的化学成分研究 530
Sport in der Antike Hardcover – March 1, 2015 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 有机化学 工程类 生物化学 纳米技术 物理 内科学 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 电极 光电子学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 2409120
求助须知:如何正确求助?哪些是违规求助? 2105121
关于积分的说明 5316071
捐赠科研通 1832571
什么是DOI,文献DOI怎么找? 913085
版权声明 560733
科研通“疑难数据库(出版商)”最低求助积分说明 488255