AI Cardiac MRI Scar Analysis Aids Prediction of Major Arrhythmic Events in the Multicenter DERIVATE Registry

医学 射血分数 心脏病学 内科学 心室 心力衰竭 狼牙棒 植入式心律转复除颤器 接收机工作特性 心脏磁共振 磁共振成像 比例危险模型 心肌病 心肌梗塞 放射科 经皮冠状动脉介入治疗
作者
Fahime Ghanbari,T. A. Joyce,Valentina Lorenzoni,Andrea Igoren Guaricci,Anna Giulia Pavon,Laura Fusini,Daniele Andreini,Mark Rabbat,Giovanni Donato Aquaro,Raffaele Abete,Jan Bogaert,Giovanni Camastra,Samuela Carigi,Nazario Carrabba,Grazia Casavecchia,Stefano Censi,Gloria Cicala,Carlo N. De Cecco,Manuel De Lazzari,Gabriella Di Giovine,Mauro Di Roma,Marta Focardi,Nicola Gaibazzi,Annalaura Gismondi,Matteo Gravina,Chiara Lanzillo,Massimo Lombardi,Jordi Lozano-Torres,Ambra Masi,Claudio Moro,Giuseppe Muscogiuri,Alberto Nese,Silvia Pradella,Stefano Sbarbati,U. Joseph Schoepf,Adele Valentini,Gérard Crelier,Pier Giorgio Masci,Gianluca Pontone,Sebastian Kozerke,Juerg Schwitter
出处
期刊:Radiology [Radiological Society of North America]
卷期号:307 (3) 被引量:3
标识
DOI:10.1148/radiol.222239
摘要

Background Scar burden with late gadolinium enhancement (LGE) cardiac MRI (CMR) predicts arrhythmic events in patients with postinfarction in single-center studies. However, LGE analysis requires experienced human observers, is time consuming, and introduces variability. Purpose To test whether postinfarct scar with LGE CMR can be quantified fully automatically by machines and to compare the ability of LGE CMR scar analyzed by humans and machines to predict arrhythmic events. Materials and Methods This study is a retrospective analysis of the multicenter, multivendor CarDiac MagnEtic Resonance for Primary Prevention Implantable CardioVerter DebrillAtor ThErapy (DERIVATE) registry. Patients with chronic heart failure, echocardiographic left ventricular ejection fraction (LVEF) of less than 50%, and LGE CMR were recruited (from January 2015 through December 2020). In the current study, only patients with ischemic cardiomyopathy were included. Quantification of total, dense, and nondense scars was carried out by two experienced readers or a Ternaus network, trained and tested with LGE images of 515 and 246 patients, respectively. Univariable and multivariable Cox analyses were used to assess patient and cardiac characteristics associated with a major adverse cardiac event (MACE). Area under the receiver operating characteristic curve (AUC) was used to compare model performances. Results In 761 patients (mean age, 65 years ± 11, 671 men), 83 MACEs occurred. With use of the testing group, univariable Cox-analysis found New York Heart Association class, left ventricle volume and/or function parameters (by echocardiography or CMR), guideline criterion (LVEF of ≤35% and New York Heart Association class II or III), and LGE scar analyzed by humans or the machine-learning algorithm as predictors of MACE. Machine-based dense or total scar conferred incremental value over the guideline criterion for the association with MACE (AUC: 0.68 vs 0.63, P = .02 and AUC: 0.67 vs 0.63, P = .01, respectively). Modeling with competing risks yielded for dense and total scar (AUC: 0.67 vs 0.61, P = .01 and AUC: 0.66 vs 0.61, P = .005, respectively). Conclusion In this analysis of the multicenter CarDiac MagnEtic Resonance for Primary Prevention Implantable CardioVerter DebrillAtor ThErapy (DERIVATE) registry, fully automatic machine learning-based late gadolinium enhancement analysis reliably quantifies myocardial scar mass and improves the current prediction model that uses guideline-based risk criteria for implantable cardioverter defibrillator implantation. ClinicalTrials.gov registration no.: NCT03352648 Published under a CC BY 4.0 license. Supplemental material is available for this article.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
自渡完成签到,获得积分10
刚刚
zz发布了新的文献求助10
1秒前
1秒前
2秒前
2秒前
救命啊完成签到 ,获得积分10
3秒前
Jim_Studio完成签到,获得积分10
3秒前
劼大大完成签到,获得积分10
4秒前
6秒前
7秒前
7秒前
Akim应助啧啧啧采纳,获得10
7秒前
hy发布了新的文献求助10
7秒前
慕青应助天天扫大街采纳,获得10
8秒前
9秒前
盯盯盯发布了新的文献求助10
10秒前
jd发布了新的文献求助10
11秒前
12秒前
沉默的谷秋完成签到,获得积分10
13秒前
欢喜烧鹅完成签到,获得积分10
13秒前
wadaxiwa完成签到,获得积分10
14秒前
彭于晏应助cbxzhsun采纳,获得20
16秒前
yy完成签到,获得积分20
17秒前
18秒前
FashionBoy应助贤惠的一刀采纳,获得10
18秒前
脑洞疼应助Vi采纳,获得10
19秒前
倩倩完成签到 ,获得积分10
19秒前
20秒前
xiang完成签到,获得积分10
20秒前
zhuangzhu完成签到,获得积分10
21秒前
ljq完成签到,获得积分10
22秒前
啧啧啧发布了新的文献求助10
24秒前
ZHANGMANLI0422完成签到,获得积分10
25秒前
25秒前
27秒前
李玉琼完成签到,获得积分10
28秒前
30秒前
爱吃橙子的苹果水完成签到 ,获得积分10
32秒前
啧啧啧完成签到,获得积分20
33秒前
无算浮白完成签到,获得积分10
33秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
引进保护装置的分析评价八七年国外进口线路等保护运行情况介绍 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3841873
求助须知:如何正确求助?哪些是违规求助? 3383895
关于积分的说明 10531786
捐赠科研通 3104108
什么是DOI,文献DOI怎么找? 1709514
邀请新用户注册赠送积分活动 823302
科研通“疑难数据库(出版商)”最低求助积分说明 773878