Spatial‐aware contrastive learning for cross‐domain medical image registration

人工智能 计算机科学 图像配准 医学影像学 计算机视觉 匹配(统计) 特征(语言学) 领域(数学分析) 模式识别(心理学) 磁共振成像 图像(数学) 放射科 医学 病理 数学 数学分析 语言学 哲学
作者
Chenchu Rong,Zhiru Li,Rui Li,Yuanqing Wang
出处
期刊:Medical Physics [Wiley]
卷期号:51 (11): 8141-8150
标识
DOI:10.1002/mp.17311
摘要

Abstract Background With the rapid advancement of medical imaging technologies, precise image analysis and diagnosis play a crucial role in enhancing treatment outcomes and patient care. Computed tomography (CT) and magnetic resonance imaging (MRI), as pivotal technologies in medical imaging, exhibit unique advantages in bone imaging and soft tissue contrast, respectively. However, cross‐domain medical image registration confronts significant challenges due to the substantial differences in contrast, texture, and noise levels between different imaging modalities. Purpose The purpose of this study is to address the major challenges encountered in the field of cross‐domain medical image registration by proposing a spatial‐aware contrastive learning approach that effectively integrates shared information from CT and MRI images. Our objective is to optimize the feature space representation by employing advanced reconstruction and contrastive loss functions, overcoming the limitations of traditional registration methods when dealing with different imaging modalities. Through this approach, we aim to enhance the model's ability to learn structural similarities across domain images, improve registration accuracy, and provide more precise imaging analysis tools for clinical diagnosis and treatment planning. Methods With prior knowledge that different domains of images (CT and MRI) share same content‐style information, we extract equivalent feature spaces from both images, enabling accurate cross‐domain point matching. We employ a structure resembling that of an autoencoder, augmented with designed reconstruction and contrastive losses to fulfill our objectives. We also propose region mask to solve the conflict between spatial correlation and distinctiveness, to obtain a better representation space. Results Our research results demonstrate the significant superiority of the proposed spatial‐aware contrastive learning approach in the domain of cross‐domain medical image registration. Quantitatively, our method achieved an average Dice similarity coefficient (DSC) of 85.68%, target registration error (TRE) of 1.92 mm, and mean Hausdorff distance (MHD) of 1.26 mm, surpassing current state‐of‐the‐art methods. Additionally, the registration processing time was significantly reduced to 2.67 s on a GPU, highlighting the efficiency of our approach. The experimental outcomes not only validate the effectiveness of our method in improving the accuracy of cross‐domain image registration but also prove its adaptability across different medical image analysis scenarios, offering robust support for enhancing diagnostic precision and patient treatment outcomes. Conclusions The spatial‐aware contrastive learning approach proposed in this paper introduces a new perspective and solution to the domain of cross‐domain medical image registration. By effectively optimizing the feature space representation through carefully designed reconstruction and contrastive loss functions, our method significantly improves the accuracy and stability of registration between CT and MRI images. The experimental results demonstrate the clear advantages of our approach in enhancing the accuracy of cross‐domain image registration, offering significant application value in promoting precise diagnosis and personalized treatment planning. In the future, we look forward to further exploring the application of this method in a broader range of medical imaging datasets and its potential integration with other advanced technologies, contributing more innovations to the field of medical image analysis and processing.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
乔心发布了新的文献求助10
2秒前
儒雅曼岚完成签到,获得积分20
3秒前
3秒前
4秒前
田様应助bernoulli采纳,获得10
5秒前
小雨堂完成签到 ,获得积分10
7秒前
爸爸_爸爸_帮帮我完成签到,获得积分10
8秒前
刘三哥完成签到 ,获得积分10
8秒前
pluto应助兜兜采纳,获得20
9秒前
14秒前
17秒前
雨堂完成签到 ,获得积分10
18秒前
qiushui发布了新的文献求助10
19秒前
儒雅曼岚发布了新的文献求助10
19秒前
wwwwrrrrr完成签到,获得积分10
20秒前
Malmever发布了新的文献求助10
21秒前
漂亮幻莲发布了新的文献求助10
25秒前
qiushui完成签到,获得积分10
25秒前
Owen应助胡庆余堂小洋参采纳,获得10
29秒前
32秒前
科研通AI5应助Malmever采纳,获得10
34秒前
lmy完成签到,获得积分10
34秒前
听海完成签到 ,获得积分10
38秒前
落寞依珊发布了新的文献求助10
39秒前
star完成签到,获得积分10
42秒前
xie关注了科研通微信公众号
42秒前
bernoulli完成签到,获得积分10
44秒前
44秒前
爱科研的小虞完成签到 ,获得积分10
45秒前
zhukun完成签到,获得积分10
46秒前
可爱的函函应助ZZC采纳,获得10
47秒前
48秒前
48秒前
50秒前
Dellamoffy完成签到,获得积分10
50秒前
青山完成签到 ,获得积分10
52秒前
chonger完成签到,获得积分10
52秒前
斯文败类应助糖果乖乖采纳,获得10
54秒前
青云完成签到,获得积分10
54秒前
bernoulli发布了新的文献求助10
54秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Platinum-group elements : mineralogy, geology, recovery 260
Geopora asiatica sp. nov. from Pakistan 230
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3780426
求助须知:如何正确求助?哪些是违规求助? 3325838
关于积分的说明 10224370
捐赠科研通 3040879
什么是DOI,文献DOI怎么找? 1669111
邀请新用户注册赠送积分活动 799013
科研通“疑难数据库(出版商)”最低求助积分说明 758649