已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Spatial‐aware contrastive learning for cross‐domain medical image registration

人工智能 计算机科学 图像配准 医学影像学 计算机视觉 匹配(统计) 特征(语言学) 领域(数学分析) 模式识别(心理学) 磁共振成像 图像(数学) 放射科 医学 病理 数学 数学分析 语言学 哲学
作者
Chenchu Rong,Zhiru Li,Rui Li,Yuanqing Wang
出处
期刊:Medical Physics [Wiley]
卷期号:51 (11): 8141-8150 被引量:1
标识
DOI:10.1002/mp.17311
摘要

Abstract Background With the rapid advancement of medical imaging technologies, precise image analysis and diagnosis play a crucial role in enhancing treatment outcomes and patient care. Computed tomography (CT) and magnetic resonance imaging (MRI), as pivotal technologies in medical imaging, exhibit unique advantages in bone imaging and soft tissue contrast, respectively. However, cross‐domain medical image registration confronts significant challenges due to the substantial differences in contrast, texture, and noise levels between different imaging modalities. Purpose The purpose of this study is to address the major challenges encountered in the field of cross‐domain medical image registration by proposing a spatial‐aware contrastive learning approach that effectively integrates shared information from CT and MRI images. Our objective is to optimize the feature space representation by employing advanced reconstruction and contrastive loss functions, overcoming the limitations of traditional registration methods when dealing with different imaging modalities. Through this approach, we aim to enhance the model's ability to learn structural similarities across domain images, improve registration accuracy, and provide more precise imaging analysis tools for clinical diagnosis and treatment planning. Methods With prior knowledge that different domains of images (CT and MRI) share same content‐style information, we extract equivalent feature spaces from both images, enabling accurate cross‐domain point matching. We employ a structure resembling that of an autoencoder, augmented with designed reconstruction and contrastive losses to fulfill our objectives. We also propose region mask to solve the conflict between spatial correlation and distinctiveness, to obtain a better representation space. Results Our research results demonstrate the significant superiority of the proposed spatial‐aware contrastive learning approach in the domain of cross‐domain medical image registration. Quantitatively, our method achieved an average Dice similarity coefficient (DSC) of 85.68%, target registration error (TRE) of 1.92 mm, and mean Hausdorff distance (MHD) of 1.26 mm, surpassing current state‐of‐the‐art methods. Additionally, the registration processing time was significantly reduced to 2.67 s on a GPU, highlighting the efficiency of our approach. The experimental outcomes not only validate the effectiveness of our method in improving the accuracy of cross‐domain image registration but also prove its adaptability across different medical image analysis scenarios, offering robust support for enhancing diagnostic precision and patient treatment outcomes. Conclusions The spatial‐aware contrastive learning approach proposed in this paper introduces a new perspective and solution to the domain of cross‐domain medical image registration. By effectively optimizing the feature space representation through carefully designed reconstruction and contrastive loss functions, our method significantly improves the accuracy and stability of registration between CT and MRI images. The experimental results demonstrate the clear advantages of our approach in enhancing the accuracy of cross‐domain image registration, offering significant application value in promoting precise diagnosis and personalized treatment planning. In the future, we look forward to further exploring the application of this method in a broader range of medical imaging datasets and its potential integration with other advanced technologies, contributing more innovations to the field of medical image analysis and processing.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
光亮外套发布了新的文献求助10
1秒前
ding应助牛芳草采纳,获得10
4秒前
4秒前
Zyc完成签到 ,获得积分10
5秒前
lijinyu完成签到,获得积分10
5秒前
FashionBoy应助油柑美式采纳,获得10
6秒前
10秒前
光亮外套完成签到,获得积分10
11秒前
13秒前
14秒前
15秒前
16秒前
牛芳草发布了新的文献求助10
18秒前
20秒前
hai发布了新的文献求助10
20秒前
光亮的鹏煊完成签到 ,获得积分10
21秒前
qz发布了新的文献求助10
22秒前
Zz发布了新的文献求助10
24秒前
火火完成签到 ,获得积分10
24秒前
牛芳草完成签到,获得积分10
30秒前
英俊的铭应助cream1105采纳,获得10
34秒前
Lucas应助hai采纳,获得10
35秒前
48秒前
star完成签到 ,获得积分10
51秒前
54秒前
小白天钓鱼完成签到 ,获得积分10
55秒前
zz完成签到 ,获得积分10
56秒前
56秒前
顾矜应助Jodie采纳,获得10
58秒前
Zz完成签到,获得积分10
1分钟前
今后应助油柑美式采纳,获得10
1分钟前
1分钟前
Jodie发布了新的文献求助10
1分钟前
1分钟前
西西完成签到 ,获得积分10
1分钟前
风中的天蓝完成签到 ,获得积分10
1分钟前
hai发布了新的文献求助10
1分钟前
烂漫的断秋完成签到 ,获得积分10
1分钟前
科研通AI2S应助chengzhiheng采纳,获得10
1分钟前
科研通AI6应助dwls采纳,获得10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5558165
求助须知:如何正确求助?哪些是违规求助? 4643172
关于积分的说明 14670597
捐赠科研通 4584584
什么是DOI,文献DOI怎么找? 2514964
邀请新用户注册赠送积分活动 1489078
关于科研通互助平台的介绍 1459733