数学分析
变量(数学)
数学
常微分方程
理论(学习稳定性)
边值问题
边界(拓扑)
波动方程
功能(生物学)
可变系数
类型(生物学)
乘数(经济学)
微分方程
计算机科学
地质学
古生物学
机器学习
宏观经济学
进化生物学
经济
生物
作者
Fangqing Du,Jianghao Hao
摘要
We investigate a variable-coefficient wave equation with interior local frictional damping and memory-type dynamic boundary conditions. The innovation of the paper lies in the presence of dynamic boundary conditions, thus we need some special techniques to deal with the high-order terms on the boundary. By the Riemannian geometry method and the multiplier technique, we establish the stable results, and the energy decay result of system is described by employing the solution of a stable first-order ordinary differential equation. The stability depends on the frictional damping function and kernel function, thereby improving and generalizing the results of prior references.
科研通智能强力驱动
Strongly Powered by AbleSci AI