已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Interpretable machine learning model for new-onset atrial fibrillation prediction in critically ill patients: a multi-center study

医学 病危 心房颤动 重症监护医学 中心(范畴论) 急诊医学 机器学习 人工智能 内科学 计算机科学 化学 结晶学
作者
Chengjian Guan,A. Gong,Yan Zhao,Chen Yin,Lu Geng,Linli Liu,Xiuchun Yang,Jingchao Lu,Bing Xiao
出处
期刊:Critical Care [BioMed Central]
卷期号:28 (1) 被引量:17
标识
DOI:10.1186/s13054-024-05138-0
摘要

New-onset atrial fibrillation (NOAF) is the most common arrhythmia in critically ill patients admitted to intensive care and is associated with poor prognosis and disease burden. Identifying high-risk individuals early is crucial. This study aims to create and validate a NOAF prediction model for critically ill patients using machine learning (ML). The data came from two non-overlapping datasets from the Medical Information Mart for Intensive Care (MIMIC), with MIMIC-IV used for training and subset of MIMIC-III used as external validation. LASSO regression was used for feature selection. Eight ML algorithms were employed to construct the prediction model. Model performance was evaluated based on identification, calibration, and clinical application. The SHapley Additive exPlanations (SHAP) method was used for visualizing model characteristics and individual case predictions. Among 16,528 MIMIC-IV patients, 1520 (9.2%) developed AF post-ICU admission. A model with 23 variables was built, with XGBoost performing best, achieving an AUC of 0.891 (0.873–0.888) in validation and 0.769 (0.756–0.782) in external validation. Key predictors included age, mechanical ventilation, urine output, sepsis, blood urea nitrogen, percutaneous arterial oxygen saturation, continuous renal replacement therapy and weight. A risk probability greater than 0.6 was defined as high risk. A friendly user interface had been developed for clinician use. We developed a ML model to predict the risk of NOAF in critically ill patients without cardiac surgery and validated its potential as a clinically reliable tool. SHAP improves the interpretability of the model, enables clinicians to better understand the causes of NOAF, helps clinicians to prevent it in advance and improves patient outcomes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
欣喜道之发布了新的文献求助10
刚刚
烟里戏完成签到 ,获得积分10
2秒前
123完成签到,获得积分10
3秒前
小耿完成签到 ,获得积分10
4秒前
4秒前
linliqing完成签到,获得积分10
6秒前
情怀应助酒姬采纳,获得50
6秒前
陶醉的烤鸡完成签到 ,获得积分10
6秒前
托伐普坦完成签到,获得积分10
7秒前
Rrrowling完成签到 ,获得积分10
7秒前
7秒前
8秒前
白糖完成签到,获得积分10
9秒前
9秒前
上官若男应助雷锋采纳,获得10
11秒前
阿瓜发布了新的文献求助10
11秒前
11秒前
搜集达人应助摩卡桃桃冰采纳,获得10
12秒前
凶狠的寄风完成签到 ,获得积分10
13秒前
13秒前
雪儿完成签到 ,获得积分10
14秒前
善良的猪咪完成签到,获得积分10
16秒前
susu完成签到 ,获得积分10
16秒前
元气少女猪刚鬣应助Zz采纳,获得20
17秒前
斯文无敌完成签到,获得积分10
20秒前
雷锋完成签到,获得积分10
20秒前
鬼见愁完成签到,获得积分10
21秒前
Joseph_sss完成签到 ,获得积分10
22秒前
阿瓜完成签到,获得积分10
22秒前
牛马自己push完成签到 ,获得积分10
24秒前
谨慎秋珊完成签到 ,获得积分10
25秒前
梨子完成签到,获得积分10
26秒前
26秒前
30秒前
江城一霸完成签到,获得积分10
31秒前
31秒前
StonesKing发布了新的文献求助10
32秒前
热塑性哈士奇完成签到,获得积分10
32秒前
不开心就吃糖完成签到 ,获得积分10
32秒前
小丸子完成签到 ,获得积分10
34秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4007513
求助须知:如何正确求助?哪些是违规求助? 3547373
关于积分的说明 11298234
捐赠科研通 3282661
什么是DOI,文献DOI怎么找? 1810162
邀请新用户注册赠送积分活动 885950
科研通“疑难数据库(出版商)”最低求助积分说明 811138