Interpretable machine learning model for new-onset atrial fibrillation prediction in critically ill patients: a multi-center study

医学 病危 心房颤动 重症监护医学 中心(范畴论) 急诊医学 机器学习 人工智能 内科学 计算机科学 化学 结晶学
作者
Chengjian Guan,A. Gong,Yan Zhao,Chen Yin,Lu Geng,Linli Liu,Xiuchun Yang,Jingchao Lu,Bing Xiao
出处
期刊:Critical Care [BioMed Central]
卷期号:28 (1) 被引量:4
标识
DOI:10.1186/s13054-024-05138-0
摘要

New-onset atrial fibrillation (NOAF) is the most common arrhythmia in critically ill patients admitted to intensive care and is associated with poor prognosis and disease burden. Identifying high-risk individuals early is crucial. This study aims to create and validate a NOAF prediction model for critically ill patients using machine learning (ML). The data came from two non-overlapping datasets from the Medical Information Mart for Intensive Care (MIMIC), with MIMIC-IV used for training and subset of MIMIC-III used as external validation. LASSO regression was used for feature selection. Eight ML algorithms were employed to construct the prediction model. Model performance was evaluated based on identification, calibration, and clinical application. The SHapley Additive exPlanations (SHAP) method was used for visualizing model characteristics and individual case predictions. Among 16,528 MIMIC-IV patients, 1520 (9.2%) developed AF post-ICU admission. A model with 23 variables was built, with XGBoost performing best, achieving an AUC of 0.891 (0.873–0.888) in validation and 0.769 (0.756–0.782) in external validation. Key predictors included age, mechanical ventilation, urine output, sepsis, blood urea nitrogen, percutaneous arterial oxygen saturation, continuous renal replacement therapy and weight. A risk probability greater than 0.6 was defined as high risk. A friendly user interface had been developed for clinician use. We developed a ML model to predict the risk of NOAF in critically ill patients without cardiac surgery and validated its potential as a clinically reliable tool. SHAP improves the interpretability of the model, enables clinicians to better understand the causes of NOAF, helps clinicians to prevent it in advance and improves patient outcomes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
张润泽发布了新的文献求助30
1秒前
123完成签到,获得积分10
2秒前
yw发布了新的文献求助10
2秒前
冷酷的啤酒完成签到,获得积分10
2秒前
2秒前
金色天际线完成签到,获得积分10
3秒前
ccCherub完成签到,获得积分10
3秒前
WX完成签到 ,获得积分10
3秒前
Inter09完成签到,获得积分10
4秒前
半夏完成签到,获得积分10
4秒前
123发布了新的文献求助10
4秒前
一路向北4956完成签到,获得积分10
5秒前
Cynthia应助陈椅子的求学采纳,获得10
5秒前
MM完成签到,获得积分10
5秒前
打打应助VIP采纳,获得10
6秒前
慕青应助myg123采纳,获得10
6秒前
豆子完成签到,获得积分10
7秒前
彩色的蓝天完成签到,获得积分10
7秒前
kanoz完成签到 ,获得积分10
8秒前
匀升完成签到,获得积分10
8秒前
eno完成签到,获得积分10
8秒前
情怀应助MM采纳,获得10
9秒前
平常天佑完成签到,获得积分10
9秒前
10秒前
10秒前
棠棠完成签到 ,获得积分10
11秒前
花花完成签到,获得积分10
11秒前
风的味道完成签到,获得积分10
11秒前
LW完成签到,获得积分10
11秒前
LJJ完成签到,获得积分10
11秒前
香蕉子骞完成签到 ,获得积分10
11秒前
周清素完成签到,获得积分10
12秒前
12秒前
青易完成签到,获得积分10
12秒前
尊敬的小土豆完成签到,获得积分10
12秒前
kingwill应助小王同志采纳,获得20
12秒前
13秒前
饿了就次爪爪完成签到 ,获得积分10
14秒前
14秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3784903
求助须知:如何正确求助?哪些是违规求助? 3330232
关于积分的说明 10245019
捐赠科研通 3045573
什么是DOI,文献DOI怎么找? 1671716
邀请新用户注册赠送积分活动 800646
科研通“疑难数据库(出版商)”最低求助积分说明 759577