亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Robust extraction of pneumonia-associated clinical states from electronic health records

不可用 计算机科学 聚类分析 人工智能 数据挖掘 机器学习 医学 健康档案 医疗保健 统计 数学 经济 经济增长
作者
Feihong Xu,Félix Leonardo Morales,Luı́s A. Nunes Amaral
出处
期刊:Proceedings of the National Academy of Sciences of the United States of America [National Academy of Sciences]
卷期号:121 (45)
标识
DOI:10.1073/pnas.2417688121
摘要

Mining of electronic health records (EHR) promises to automate the identification of comprehensive disease phenotypes. However, the realization of this promise is hindered by the unavailability of generalizable ground-truth information, data incompleteness and heterogeneity, and the lack of generalization to multiple cohorts. We present here a data-driven approach to identify clinical states that we implement for 585 critical care patients with suspected pneumonia recruited by the SCRIPT study, which we compare to and integrate with 9,918 pneumonia patients from the MIMIC-IV dataset. We extract and curate from their structured EHRs a primary set of clinical features (53 and 59 features for SCRIPT and MIMIC-IV, respectively), including disease severity scores, vital signs, and so on, at various degrees of completeness. We aggregate irregular time series into daily frequency, resulting in 12,495 and 94,684 patient-day pairs for SCRIPT and MIMIC, respectively. We define a “common-sense” ground truth that we then use in a semisupervised pipeline to optimize choices for data preprocessing, and reduce the feature space to four principal components. We describe and validate an ensemble-based clustering method that enables us to robustly identify five clinical states, and use a Gaussian mixture model to quantify uncertainty in cluster assignment. Demonstrating the clinical relevance of the identified states, we find that three states are strongly associated with disease outcomes (dying vs. recovering), while the other two reflect disease etiology. The outcome associated clinical states provide significantly increased discrimination of mortality rates over standard approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zy完成签到,获得积分10
刚刚
美合完成签到 ,获得积分10
1秒前
1秒前
江氏巨颏虎完成签到,获得积分10
9秒前
11秒前
爆米花应助活泼的眼神采纳,获得10
15秒前
小伏发布了新的文献求助10
16秒前
KYT完成签到 ,获得积分10
17秒前
徐zhipei完成签到 ,获得积分10
36秒前
11发布了新的文献求助10
40秒前
小蘑菇应助橙子采纳,获得10
45秒前
anthea完成签到 ,获得积分10
46秒前
47秒前
54秒前
MrTStar完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
科研通AI5应助冰冰采纳,获得10
1分钟前
净净子完成签到 ,获得积分10
1分钟前
打打应助科研通管家采纳,获得10
1分钟前
1分钟前
老实醉冬发布了新的文献求助10
1分钟前
打地鼠工人完成签到,获得积分10
1分钟前
俏皮元珊完成签到 ,获得积分10
1分钟前
hmf1995完成签到 ,获得积分10
1分钟前
儒雅凡桃发布了新的文献求助10
1分钟前
水星完成签到,获得积分10
1分钟前
Cccsy完成签到 ,获得积分10
1分钟前
科研通AI5应助缥缈飞鸟采纳,获得10
1分钟前
1分钟前
邵能琪发布了新的文献求助10
1分钟前
嘻嘻嘻发布了新的文献求助10
1分钟前
好好学习完成签到,获得积分10
1分钟前
麻瓜完成签到,获得积分10
1分钟前
邵能琪完成签到,获得积分20
1分钟前
蓝苏关注了科研通微信公众号
1分钟前
Hello应助儒雅凡桃采纳,获得10
1分钟前
shimhjy应助邵能琪采纳,获得10
1分钟前
1分钟前
1分钟前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3800880
求助须知:如何正确求助?哪些是违规求助? 3346386
关于积分的说明 10329180
捐赠科研通 3062834
什么是DOI,文献DOI怎么找? 1681207
邀请新用户注册赠送积分活动 807462
科研通“疑难数据库(出版商)”最低求助积分说明 763702