Automatic recognition of active landslides by surface deformation and deep learning

山崩 人工智能 鉴定(生物学) 干涉合成孔径雷达 计算机科学 卷积神经网络 感知器 地质学 深度学习 机器学习 人工神经网络 遥感 合成孔径雷达 模式识别(心理学) 地震学 植物 生物
作者
Xianmin Wang,Wenxue Chen,Haifeng Ren,Haixiang Guo
出处
期刊:Progress in Physical Geography [SAGE Publishing]
卷期号:48 (5-6): 671-697
标识
DOI:10.1177/03091333241276523
摘要

Catastrophic landslides are generally evolved from potential active landslides, and early identification of active landslides over an extensive region is vital to effective prevention and control of disastrous landslides in urban areas. Interferometric Synthetic Aperture Radar (InSAR) has immense potential in mapping active landslides. However, artificial interpretation of InSAR measurements and manual recognition of active landslides are very laborious and time-consuming, with a relatively high missing and false alarms. That hinders the application of InSAR technique and the identification of active landslides in wide areas. Automatic recognition of active landslides has always been a great challenge and has been relatively rarely investigated by previous studies. This work establishes comprehensive identification indices of geoenvironmental, disaster-triggering, and surface deformation features. Moreover, it suggests a novel deep learning algorithm of SDeepFM to conduct automatic identification of active landslides across a vast and landslide-serious area of Hualong County. Some new viewpoints are suggested as follows. (1) The identification indices consist of disaster-controlling, disaster-inducing, and active deformation characteristics and are constructed in terms of the cause characteristics of active landslides. Thus, it can effectively decrease the false alarms of active landslide identification. (2) The proposed SDeepFM algorithm features a spatial-perception ability and can adequately extract and fuse the low-level and high-level semantic features. It outperforms the classification and regression tree (CART), multi-layer perceptron (MLP), convolutional neural network (CNN), and deep neural network (DNN) algorithms. The test accuracy attains 0.91, 99.73%, 90.21%, 0.92, 0.96, and 0.91 in F1-score, Accuracy, Precision, Recall, AUC, and Kappa, respectively. (3) A total of 164 active landslides are exactly recognized, and 39 active landslides are newly identified in this work. (4) In Hualong County, the characteristics of slope deformation, spatial context, lithology, tectonic movement, human activity, and topography play important roles in active landslide identification. River distribution and rainfall also contribute to active landslide recognition.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
山河发布了新的文献求助30
刚刚
余味应助hanspro采纳,获得10
2秒前
qiuiqiu1111完成签到,获得积分10
3秒前
北风完成签到,获得积分10
5秒前
一方完成签到 ,获得积分10
6秒前
8秒前
11秒前
12秒前
悄悄拔尖儿完成签到 ,获得积分10
13秒前
hanspro发布了新的文献求助10
15秒前
风趣雪一发布了新的文献求助20
19秒前
23秒前
清水小镇发布了新的文献求助10
26秒前
Mastar完成签到,获得积分10
26秒前
huco完成签到,获得积分10
27秒前
MarvelerYB3完成签到 ,获得积分10
29秒前
32秒前
清水小镇完成签到,获得积分10
33秒前
老实的初丹完成签到 ,获得积分10
35秒前
比大家完成签到,获得积分10
38秒前
39秒前
沉甸甸发布了新的文献求助10
39秒前
仁爱柠檬完成签到,获得积分10
41秒前
田様应助zhangsudi采纳,获得10
42秒前
40873完成签到,获得积分10
43秒前
满意的晓啸完成签到,获得积分10
44秒前
44秒前
科研通AI5应助小李采纳,获得10
45秒前
今后应助沉甸甸采纳,获得10
48秒前
49秒前
50秒前
54秒前
zhangsudi发布了新的文献求助10
54秒前
胡燕完成签到 ,获得积分10
54秒前
深情安青应助天真千凡采纳,获得10
56秒前
57秒前
无花果应助满意的晓啸采纳,获得10
57秒前
bc夹心完成签到,获得积分20
58秒前
谦让寻凝完成签到 ,获得积分10
59秒前
无花果应助科研通管家采纳,获得10
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mindfulness and Character Strengths: A Practitioner's Guide to MBSP 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776521
求助须知:如何正确求助?哪些是违规求助? 3322010
关于积分的说明 10208485
捐赠科研通 3037297
什么是DOI,文献DOI怎么找? 1666647
邀请新用户注册赠送积分活动 797596
科研通“疑难数据库(出版商)”最低求助积分说明 757872