FDGNet: Frequency Disentanglement and Data Geometry for Domain Generalization in Cross-Scene Hyperspectral Image Classification

高光谱成像 一般化 频域 人工智能 图像(数学) 计算机科学 数学 模式识别(心理学) 计算机视觉 数学分析
作者
Boao Qin,Shou Feng,Chunhui Zhao,Bobo Xi,Wei Li,Ran Tao
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-14 被引量:4
标识
DOI:10.1109/tnnls.2024.3445136
摘要

Cross-scene hyperspectral image classification (HSIC) poses a significant challenge in recognizing hyperspectral images (HSIs) from different domains. The current mainstream approaches based on domain adaptation (DA) methods need to access target data when aligning distributions between domains, limiting the applicability of the model. In contrast, recent domain generalization (DG) methods aim to directly generalize to unseen domains, eliminating the requirements for target data during training. Nonetheless, most DG-based methods overly focus on randomizing sample styles, leading to semantically compromised samples. In addition, broadening the source distribution without ensuring reasonable support may result in undesired extended distributions. To address these issues, we propose a novel DG network with frequency disentanglement and data geometry (FDGNet) for cross-scene HSIC. Specifically, we first develop a spectral-spatial encoder based on frequency disentanglement (FDSS encoder), which facilitates synthesized domains to preserve their semantic consistency while simulating interdomain gaps with the source domain. Second, to avoid the generation of unrealistic samples, we incorporate data geometry into adversarial training. This helps diversify new domains while keeping the data geometry of extended domains in an explainable support. To improve the learning of domain-invariant representation, we propose an intermediate domain sampling strategy based on the class-wise perceptual manifold. This strategy synthesizes reliable intermediate domains by sampling from class-wise manifold flows estimated over the source and extended domains. Extensive experiments and analysis on three public HSI datasets yield the superiority of our proposed FDGNet. The codes will be available from the website: https://github.com/Qba-heu/FDGNet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
淡淡从阳完成签到,获得积分10
1秒前
东东完成签到,获得积分10
1秒前
2秒前
爱莉希雅完成签到 ,获得积分10
3秒前
3秒前
fufufuxia发布了新的文献求助20
4秒前
东东发布了新的文献求助10
5秒前
6秒前
7秒前
wy.he应助Winnie采纳,获得20
8秒前
GY完成签到,获得积分10
8秒前
咕噜完成签到 ,获得积分10
8秒前
科研通AI5应助ANNNNN采纳,获得10
9秒前
10秒前
彩色德天发布了新的文献求助10
11秒前
跳跃幻枫发布了新的文献求助10
11秒前
12秒前
jj完成签到,获得积分10
12秒前
疯狂的月亮完成签到,获得积分10
14秒前
14秒前
aniver完成签到 ,获得积分10
15秒前
HPP123完成签到,获得积分10
15秒前
15秒前
健康的谷芹完成签到,获得积分10
15秒前
龙成阳完成签到,获得积分10
16秒前
17秒前
云瑾发布了新的文献求助10
17秒前
17秒前
qaqa发布了新的文献求助10
19秒前
20秒前
霸气的梦露完成签到,获得积分10
21秒前
您多笑笑完成签到 ,获得积分10
22秒前
田格本发布了新的文献求助10
22秒前
科研潜水完成签到 ,获得积分10
23秒前
25秒前
pan发布了新的文献求助10
25秒前
科目三应助qaqa采纳,获得10
25秒前
26秒前
上官若男应助yaaaaajie采纳,获得10
28秒前
29秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3785937
求助须知:如何正确求助?哪些是违规求助? 3331345
关于积分的说明 10251003
捐赠科研通 3046816
什么是DOI,文献DOI怎么找? 1672196
邀请新用户注册赠送积分活动 801108
科研通“疑难数据库(出版商)”最低求助积分说明 759994