NTK-Guided Few-Shot Class Incremental Learning

计算机科学 班级(哲学) 人工智能 弹丸 一次性 计算机视觉 化学 工程类 机械工程 有机化学
作者
Jingren Liu,Zhong Ji,Yanwei Pang,Yunlong Yu
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:33: 6029-6044
标识
DOI:10.1109/tip.2024.3478854
摘要

The proliferation of Few-Shot Class Incremental Learning (FSCIL) methodologies has highlighted the critical challenge of maintaining robust anti-amnesia capabilities in FSCIL learners. In this paper, we present a novel conceptualization of anti-amnesia in terms of mathematical generalization, leveraging the Neural Tangent Kernel (NTK) perspective. Our method focuses on two key aspects: ensuring optimal NTK convergence and minimizing NTK-related generalization loss, which serve as the theoretical foundation for cross-task generalization. To achieve global NTK convergence, we introduce a principled meta-learning mechanism that guides optimization within an expanded network architecture. Concurrently, to reduce the NTK-related generalization loss, we systematically optimize its constituent factors. Specifically, we initiate self-supervised pre-training on the base session to enhance NTK-related generalization potential. These self-supervised weights are then carefully refined through curricular alignment, followed by the application of dual NTK regularization tailored specifically for both convolutional and linear layers. Through the combined effects of these measures, our network acquires robust NTK properties, ensuring optimal convergence and stability of the NTK matrix and minimizing the NTK-related generalization loss, significantly enhancing its theoretical generalization. On popular FSCIL benchmark datasets, our NTK-FSCIL surpasses contemporary state-of-the-art approaches, elevating end-session accuracy by 2.9% to 9.3%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
天天快乐应助Lionnn采纳,获得10
1秒前
酷波er应助标致芷雪采纳,获得10
1秒前
在水一方应助太阳cy采纳,获得10
2秒前
yc完成签到,获得积分10
2秒前
CipherSage应助王自信采纳,获得10
3秒前
哈哈完成签到,获得积分10
3秒前
4秒前
Lora完成签到,获得积分10
4秒前
牟潦草完成签到,获得积分10
4秒前
kyt发布了新的文献求助10
5秒前
6秒前
6秒前
7秒前
张奕冰完成签到,获得积分10
8秒前
陈一口发布了新的文献求助10
8秒前
8秒前
搜集达人应助落寞的怜雪采纳,获得30
8秒前
Miyya完成签到,获得积分10
10秒前
善学以致用应助拼搏紫槐采纳,获得10
10秒前
yc发布了新的文献求助10
10秒前
10秒前
smy发布了新的文献求助30
11秒前
深情安青应助黑色幽默采纳,获得10
11秒前
serene发布了新的文献求助10
11秒前
乐乐发布了新的文献求助10
11秒前
超级台灯完成签到,获得积分10
11秒前
小芮完成签到,获得积分10
12秒前
12秒前
12秒前
yaoyao完成签到,获得积分10
13秒前
某某发布了新的文献求助10
13秒前
Lionnn完成签到,获得积分10
13秒前
木中一完成签到,获得积分10
14秒前
zho驳回了Owen应助
14秒前
MQQ发布了新的文献求助10
14秒前
李爱国应助Ww采纳,获得10
15秒前
NSS完成签到,获得积分10
15秒前
木子完成签到,获得积分10
16秒前
zouyiming发布了新的文献求助100
17秒前
18秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 (PDF!) 1000
Technologies supporting mass customization of apparel: A pilot project 450
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3789277
求助须知:如何正确求助?哪些是违规求助? 3334313
关于积分的说明 10269025
捐赠科研通 3050734
什么是DOI,文献DOI怎么找? 1674119
邀请新用户注册赠送积分活动 802497
科研通“疑难数据库(出版商)”最低求助积分说明 760692