New Strategies for High Efficiency and Precision Bioprinting by DOE Technology and Machine Learning

计算机科学 人工智能 制造工程 机器学习 工业工程 工程类
作者
Chuyan Dai,Yazhou Sun,Hangqi Zhang,Z. Y. Yuan,Bohan Zhang,Zhenwei Xie,Peixun Li,Haitao Liu
出处
期刊:Advanced materials and technologies [Wiley]
标识
DOI:10.1002/admt.202401138
摘要

Abstract Extrusion‐based 3D printing technology is currently demonstrating considerable potential in the field of tissue engineering scaffolds, enabling the construction of in vitro models with complex structures and functions using a wide range of biomaterials and cells at a low cost. In recent years, researchers have spent considerable effort developing novel bio‐inks and employing a greater variety of cell sources to enhance biological compatibility and functionality. However, the majority of current bio‐ink materials are unprintable due to their low viscosity and long curing time, as well as insufficient shape fidelity before the secondary cross‐linking process. The study aims to bridge this gap by optimizing the material ratios and predicting the printing process before work. This article presents new strategies for the design, fabrication, and analysis of a new composite bio‐ink material. The optimal ink ratios are verified by a design of experiments (DOE) experimental design and evaluation metrics for printing printability (Pr) values. A machine learning model is used to predict the ink printing area and determine the printing process parameters. The influence mechanism of ink materials with different concentrations of poly (ethylene glycol) diacrylate (PEGDA) ratios on printed fibers is investigated. Finally, the optimal results are used as an example to demonstrate the printability of multilayer stents. Thus, the design approach allows for the rapid and cost‐effective exploration of novel ink ratios, while also providing higher fidelity and more accurate process metrics for the fabrication of tissue structures with multidimensional variables.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助fouli采纳,获得10
2秒前
2秒前
2秒前
CTtoF完成签到,获得积分10
2秒前
崔双艳发布了新的文献求助10
3秒前
4秒前
4秒前
昊然的然发布了新的文献求助10
4秒前
庸人自扰发布了新的文献求助10
5秒前
spark完成签到,获得积分10
5秒前
6秒前
lou完成签到,获得积分10
6秒前
活泼莫英发布了新的文献求助10
6秒前
7秒前
7秒前
99完成签到,获得积分10
8秒前
8秒前
9秒前
lou发布了新的文献求助10
9秒前
QXD完成签到,获得积分10
10秒前
10秒前
11秒前
11秒前
韩梅完成签到,获得积分10
12秒前
李健的粉丝团团长应助zyc采纳,获得10
12秒前
13秒前
13秒前
布洛芬完成签到,获得积分10
13秒前
打打应助昊然的然采纳,获得10
14秒前
宁大小王子完成签到,获得积分10
14秒前
秋向秋发布了新的文献求助10
14秒前
ENO_i发布了新的文献求助10
14秒前
肥四完成签到,获得积分10
15秒前
16秒前
蜡笔小z发布了新的文献求助10
17秒前
在水一方应助1111采纳,获得10
17秒前
111完成签到,获得积分10
18秒前
Upupuu完成签到,获得积分10
18秒前
韩梅发布了新的文献求助10
18秒前
丰富的大地完成签到,获得积分10
19秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3817624
求助须知:如何正确求助?哪些是违规求助? 3360911
关于积分的说明 10410260
捐赠科研通 3078989
什么是DOI,文献DOI怎么找? 1690938
邀请新用户注册赠送积分活动 814240
科研通“疑难数据库(出版商)”最低求助积分说明 768068